

Logix 5000 Controllers General Instructions

1756 ControlLogix, 1756 GuardLogix, 1769 CompactLogix, 1769 Compact GuardLogix, 1789 SoftLogix, 5069 CompactLogix, Emulate 5570

Reference Guide

Original Instructions

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT: Identifies information that is critical for successful application and understanding of the product.

These labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).

The following icon may appear in the text of this document.

Tip: Identifies information that is useful and can help to make a process easier to do or easier to understand.

Rockwell Automation recognizes that some of the terms that are currently used in our industry and in this publication are not in alignment with the movement toward inclusive language in technology. We are proactively collaborating with industry peers to find alternatives to such terms and making changes to our products and content. Please excuse the use of such terms in our content while we implement these changes.

Summary of changes

This manual includes new and updated information. Use these reference tables to locate changed information.

Global changes

None for this release.

New or enhanced features

Subject	Reason	
Access the TimeSynchronize object on page 252	Anomaly resolution; corrected link to the Deploying Scalable Time Distribution within a Converged	
	Plantwide Ethernet Architecture Design Guide.	
File Search and Compare (FSC) on page 536	Anomaly resolution; in the Ladder diagram table, removed BOOL from the list of data types supported	
	for 5x80 controllers.	

Contents

Alarm Instructions		19
Alarm Set Operat	tion (ASO)	19
Analog Alarm (AL	MA)	22
Digital Alarm (AL	MD)	50
Bit Instructions		65
One Shot (ONS)		65
One Shot Falling	(OSF)	
One Shot Falling	with Input (OSFI)	
One Shot Rising	(OSR)	72
One Shot Rising	with Input (OSRI)	74
Output Energize	(OTE)	76
Output Latch (OT	ΓL)	
Output Unlatch (OTU)	
Examine if Close	əd (XIC)	
Examine if Close	əd (XIC)	82
Examine If Open	(XIO)	
Timer and Counter In	nstructions	
Count Down (CTI	D)	87
Count Up (CTU)		
Count Up/Down ((CTUD)	
Reset (RES)		101
Retentive Timer	On (RTO)	
Retentive Timer	On with Reset (RTOR)	
Timer Off Delay	(TOF)	111
Timer Off Delay	with Reset (TOFR)	
Timer On Delay ((TON)	
Timer On Delay v	with Reset (TONR)	123
Input/Output Instruct	tions	127
Message (MSG)		
MSG Configuration	on Examples	145
Major fault types	s and codes	145
Minor fault types	s and codes	145
Extended Error C	Codes	
Specify the Com	munication Details	

Specify SLC Messages	
Specify Block Transfer Messages	
Get System Value (GSV) and Set System Value (SSV)	162
Immediate Output (IOT)	189
Reference (REF)	194
Access System Values	196
Access the AddOnInstructionDefinition Object	
Access the ALARMBUFFER object	197
Access the Axis object	200
Access the Controller object	212
Access the ControllerDevice object	215
Access the CoordinateSystem object	219
Access the CST object	224
Access the DF1 object	226
Access the FaultLog object	230
Access the HardwareStatus object	231
Access the Message object	234
Access the Module object	235
Access the Routine object	239
Access the Redundancy object	
Access the Program object	244
Access the MotionGroup object	245
Access the Message object	247
Access the Safety object	248
Access the Task object	250
Access the TimeSynchronize object	252
Access the WallClockTime object	257
Determine Controller Memory Information	259
DeviceNet Status Codes	262
Get and Set System Data	
GSV/SSV Programming Example	268
GSV/SSV Objects	
GSV/SSV Safety Objects	272
Monitor Status Flags	281
Select the Message Type	
Module Faults: 16#0000 - 16#00ff	

Module Faults: 16#0100 - 16#01ff	
Module Faults: 16#0200 - 16#02ff	
Module Faults: 16#0300 - 16#03ff	
Module Faults: 16#0800 - 16#08ff	
Module Faults: 16#fd00 - 16#fdff	
Module Faults: 16#fe00 - 16#feff	
Module Faults: 16#ff00 - 16#ffff	
Specify CIP Messages	
Specify PLC-3 Messages	
Specify PLC-5 Messages	
Specify PLC-2 Messages	
Compare Instructions	
- Equal To (EQ)	
Сотраге (СМР)	
Greater Than (GT)	
GT Flow Chart (True)	
Greater Than or Equal To (GE)	
Is Infinity (ISINF)	
ls Not a Number (IsNAN)	
Less Than (LT)	
Less Than or Equal To (LE)	
Limit (LIMIT)	
Mask Equal To (MEQ)	
Not Equal To (NE)	
Valid operators	
What is zero fill?	
Compute/Math Instructions	
- Absolute Value (ABS)	
Add (ADD)	
Compute (CPT)	
Divide (DIV)	
Modulo (MOD)	
Multiply (MUL)	
Negate (NEG)	
Square Root (SQRT)	
Subtract (SUB)	

	FBD Functions	440
	Function Overloading	440
Mov	ve/Logical Instructions	. 443
	Bit Field Distribute (BTD)	444
	Bit Field Distribute with Target (BTDT)	447
	Bitwise And (AND)	451
	Bitwise Exclusive Or (XOR)	457
	Bitwise Not (NOT)	462
	Bitwise Inclusive Or (OR)	467
	Clear (CLR)	473
	Masked Move (MVM)	476
	Masked Move with Target (MVMT)	478
	Move (MOVE)	482
	Swap Byte (SWPB)	486
	Boolean AND (BAND)	489
	Boolean Exclusive OR (BXOR)	493
	Boolean NOT (BNOT)	497
	Boolean OR (BOR)	500
Arr	ay File-Misc Instructions	. 505
	Copy (COP) - Synchronous Copy (CPS)	506
	File Arithmetic and Logic (FAL)	514
	File Average (AVE)	529
	File Fill (FLL)	533
	File Search and Compare (FSC)	536
	File Sort (SRT)	548
	File Standard Deviation (STD)	553
	Size In Elements (SIZE)	557
	Size in Elements (Size)	
		562
	All Mode Flow Chart-FSC	562 562
	All Mode Flow Chart-FSC	562 562 564
	All Mode Flow Chart-FSC Numerical Mode Numeric Mode Flow Chart-FSC	562 562 564 564
	All Mode Flow Chart-FSC Numerical Mode Numeric Mode Flow Chart-FSC Incremental Mode	562 562 564 564 566
	All Mode Flow Chart-FSC Numerical Mode Numeric Mode Flow Chart-FSC Incremental Mode Incremental Mode Flow Chart-FSC	562 562 564 566 566
Arr	All Mode Flow Chart-FSC Numerical Mode Numeric Mode Flow Chart-FSC Incremental Mode Incremental Mode Flow Chart-FSC	562 562 564 566 566 566
Arr	All Mode Flow Chart-FSC Numerical Mode Numeric Mode Flow Chart-FSC Incremental Mode Incremental Mode Flow Chart-FSC Standard Deviation	562 564 564 566 566 566

	Bit Shift Right (BSR)	572
	FIFO Load (FFL)	576
	FIFO Unload (FFU)	582
	LIFO Load (LFL)	588
	LIFO Unload (LFU)	594
Seq	uencer Instructions	601
	Sequencer Input (SQI)	601
	Sequencer Load (SQL)	604
	Sequencer Output (SQO)	608
Pro	gram Control Instructions	613
	Always False (AFI)	614
	End of Transition (EOT)	615
	Jump to External Routine (JXR)	616
	Jump to Label (JMP) and Label (LBL)	620
	Jump to Subroutine (JSR), Subroutine (SBR), and Return (RET)	622
	Add Input Parameter command	630
	Master Control Reset (MCR)	630
	MCR Flow Chart (False)	633
	No Operation (NOP)	633
	Pause SFC (SFP)	635
	Reset SFC (SFR)	637
	Temporary End (TND)	639
	Trigger Event Task (EVENT)	640
	User Interrupt Disable (UID)/User Interrupt Enable (UIE)	644
	Unknown Instruction (UNK)	647
For	/Break Instructions	649
	Break (BRK)	649
	For (FOR)	650
Spe	cial Instructions	655
	Data Transition (DTR)	655
	Diagnostic Detect (DDT)	658
	File Bit Comparison (FBC)	665
	Proportional Integral Derivative (PID)	673
	Using PID Instructions	678
	Anti-reset Windup and Bumpless Transfer From Manual To Auto (PID)	682
	Bumpless Restart (PID)	683

Cascading Loops (PID)	
Controlling a Ratio (PID)	
Derivative Smoothing (PID)	
Feedforward or Output Biasing (PID)	
PID Instruction Timing	
Setting the Deadband (PID)	
Using Output Limiting (PID)	
Trigonometric Instructions	
Arc Cosine (ACOS)	
Arc Sine (ASIN)	
Arc Tangent (ATAN)	
Two-Argument Arctangent (ATAN2)	
Cosine (COS)	
Sine (SIN)	
Tangent (TAN)	
Advanced Math Instructions	
Log Base 10 (LOG)	
Natural Log (LN)	
X to the Power of Y (EXPT)	
Math Conversion Instructions	
Convert to BCD (TO_BCD)	
Convert to Integer (BCD_TO)	
Degrees (DEG)	
Radian (RAD)	
Truncate (TRUNC)	
ASCII Serial Port Instructions	
ASCII Chars in Buffer (ACB)	
ASCII Clear Buffer (ACL)	
ASCII Handshake Lines (AHL)	
ASCII Read (ARD)	
ASCII Read Line (ARL)	
ASCII Test for Buffer Line (ABL)	
ASCII Write (AWT)	
ASCII Write Append (AWA)	
String Types	
ASCII Error Codes	

Fird String (FR0) 888 Intert String (INSFPT) 010 Mede String (IND) 892 String (Concetence (CONCAT) 893 String Intert String (INSFPT) 893 ASCE Conversion Instructions 823 DNI (a String y100S 624 Intert Exerction (String (INS) 823 String Jone (INSFPT) 636 String to BNI (String) 830 String to BNI (String) 833 Upper Case (UPPER) 833 Debug Instructions 843 Tracepoints (IPT) 639 Traces Instructions 640 Traces Instructions 640 Traces Instructions 640 Traces In	ASCII String Instructions	
Hidds String (PHD) 612 String Concetenate (CONCAT) 615 String Telete (EELETE) 619 ACEC conversion Instructions 623 DIT to String OTOS 624 Lower Case-LOVER 626 FEAL to String (RIDS) 626 String to REAL (STOR) 620 String to REAL (STOR) 620 String to REAL (STOR) 630 String to REAL (STOR) 633 Upper Case (UPPER) 633 Debug Instructions 642 License Instructions 642 License Instructions 643 Transpoints (TPT) 642 License Instructions 643 Math status (fags. 644 Innexistics for General Instructions 644 Paeudo-apperad Initialization 650 Date conversions 651 Date conversions 652 Fielding Paint Values 651 Fielding Paint Values 651 Fielding Paint Values 651 File data types 652 Fielding Paint Values 651	Find String (FIND)	
String Davatenete (CHECH1) 815 String Delete (DELETE) 819 ASEI Centersion lastructions 823 DNT to String-UTDS 824 Lover Case-UWER 826 PEAL to String (RTOS) 824 String to DNT (STOD) 830 String to NEL (STOR) 833 Upper Case-UWER 839 Breakpoints (IPT) 839 Transprints (IPT) 839 Transprints (IPT) 844 License Instructions 849 Math status flags. 849 Intractate values. 850 Data conversions. 849 Math status flags. 840 Intractate values. 850 Desuperand intituization. 850 Data conversions. 850 Desuperand intituization. 850 Fine and date data types. 850 Pauling Paint Values. 861 Pauling Paint Values. 863 Pauling Paint Values. 863 Finetions. 864 Proveloperand intituitization 865 Forection String Paint Values. 865 Forection String Paint Values. 865 Forection String Paint Values. 865 Forection String Pai	Insert String (INSERT)	
String Delate (DELETE) 019 ASCI Conversion Instructions 623 DNT to String-DDS 024 Lever Case-LOWER 626 REAL to String (RIS) 628 String to UNT (STOD) 630 String to UNT (STOD) 630 Option Case-LOWER 635 Debug Instructions 633 Debug Instructions 635 Debug Instructions 639 Tracepaints (IPT) 632 Userse Validation (IV) 647 Common Attributes for General Instructions 649 Tath status flags 649 Intendiate values 650 Debug restructions 649 Intendiate values 650 Data conversions 649 Intendiate values 650 Data conversions 651 Densentary data types 652 Read String Paint Values 653 RMD functions 654 Product operand Initialization 655 Time and data data types 653 Read functions 654 Plan functions 653 Read functions 654 Product operand Initialization 655 Time and data data types 656 <td>Middle String (MID)</td> <td></td>	Middle String (MID)	
ASEI Conversion Instructions. 823 DNT to String-010S. 824 Lower Case-LOWER. 828 BEAL to String (ROS). 829 String to DNT (STOD). 830 String to EAL (STOP). 833 Upper Case (UPFER). 839 Breatpoints (RP1) 839 Transpoints (RP1) 839 Transpoints (RP1) 842 License Instructions. 847 Common Attributes for General Instructions. 847 Common Attributes for General Instructions. 846 Math status flags. 849 Immediate values. 850 Data conversions. 854 Prevolor-operand Initialization. 854 FBB strates 860 Diat conversions. 853 Elementary data types. 854 Of Ponctiona. 854 FBB functiona. 854 Diversions 853 Bit Addressing. 854 FBB functiona. 853 Bit Addressing. 854 FBB functiona. 855 Bit Addressing.	String Concatenate (CONCAT)	
DNT to String-DTDS. 624 Lover Case-LTWER. 626 REAL to String (RTDS). 620 String to DNT (STDD). 630 String to DNT (STDD). 630 String to DNT (STDD). 630 Debug Instructions. 639 Debug Instructions. 639 Tracepoints (PT). 632 License Validation (LV). 637 License Validation (LV). 637 License Validation (LV). 637 License Validation (LV). 637 Data conversions. 640 Immediate values. 650 Data conversions. 651 Dementary data types. 652 St objects that support time and date data types. 650 Time and date data types. 651 Definitions. 652 Index through arrays. 653 Bit Addressing 653 Math status flags. 652 Index through arrays. 653 Bit Addressing 654 Fiber functions. 652 Index through arrays. 653 Bi	String Delete (DELETE)	
Lower Case-LWVER 626 FEAL to String (RTOS) 628 String to DINT (STOD) 630 String to REAL (STOP) 633 Upper Case (UPER) 635 Debug Instructions 639 Breakpoints (PT) 639 Tracepoints (IPT) 642 License Instructions 649 Math status flags 649 Math status flags 649 Immediate values 650 Debug output: 651 Elementary data trapes 654 Pseudo operand initialization 656 Top Values 656 FID Fourtions 651 Direction for Values 652 FID Fourtions 654 Pseudo operand initialization 656 Time and date data types 650 FID Fourtions 652 Index through arrays 653 Bit Addressing 654 Hajor fault types 655 Gene and Codes 655 Function Block Attributes 657 Conces the Function Block Attributes 657	ASCII Conversion Instructions	
PEAL to String (PTOS). 828 String to DINT (STOD). 830 String to REAL (STOR). 833 Upper Case (UPPER). 835 Debug Instructions. 839 Breakpoints (PT). 839 Tracepoints (IPT). 842 License Instructions. 847 License Validation (LV). 847 Common Attributes for General Instructions. 849 Math status flags. 849 Nation Status, flags. 849 Data conversions. 851 Dementary data types. 856 Time and data data types. 856 Floating Point Values. 851 Floating Point Values. 861 Float functions. 852 Float functions. 853 Bit Addressing. 853 Bit Addressing. 853 Bit Addressing. 853 Function Block Attributes. 865 Function Block Attributes. 867 Conso the Function Block Elements. 867 Conso the Function Block Attributes. 867 Conso the Function Block Attributes. <td>DINT to String-DTOS</td> <td></td>	DINT to String-DTOS	
String to DBT (STD) 630 String to REAL (STR) 633 Upper Case (UPFER) 635 Debug Instructions 639 Breakpoints (PT) 639 Tracepoints (TP1) 647 License Validation (LV) 647 Common Attributes for General Instructions 649 Math status flags. 649 Inmediate values. 650 Data conversions. 649 Itementary data types 650 Data conversions. 650 Data conversions. 650 Data conversions. 650 Elementary data types 654 Pseudo-operand initialization 655 Time and date data types. 660 FBD Functions. 660 FBD Functions. 661 FBD Functions. 662 Index through arrays. 683 Bit Addressing. 684 Major fault types and codes. 685 FENCION Block Attributes. 685 Fonction Block Attributes. 685 Conso the Function Block Elements. 686	Lower Case-LOWER	
String to REAL (STOR) 833 Upper Case (UPPER) 835 Dobug Instructions 839 Breakpoints (BPT) 639 Tracepoints (TPT) 642 License Instructions 847 License Validation (LY) 647 Common Attributes for General Instructions 849 Math status flags 649 Immediate values 650 Data conversions 650 Data conversions 651 Elementary data types 656 Time and date data types 656 FBD Functions 687 FBD Functions 687 Riddressing 687 Middressing 687 Riddressing 687 Middressing 687 Rind fault types 687 FBD Functions 687 Rind fault types 687 Rind fault types 687 FBD Functions 687 Rind fault types and codes 685 Finotions 687 Bit Addressing 686 Minor fault types and co	REAL to String (RTOS)	
Upper Case (UPPER). 835 Dobug Instructions. 839 Breakpoints (BPT) 839 Tracepoints (TPT) 842 License Instructions. 847 License Validation (LV). 847 Common Attributes for General Instructions. 849 Math status flags. 849 Inmediate values. 850 Data conversions. 851 Elementary data types. 854 Pseudo-operand initialization. 856 Time and date data types. 860 Floating Point Values. 861 FBD Functions 862 Indx through arrays. 863 Bit Addressing. 864 Major fault types and codes. 865 Function Block Attributes. 867 Conton Block Attributes. 867 Conton Block Attributes. 867	String to DINT (STOD)	
Debug Instructions 839 Breakpoints (BPT) 642 License Instructions 847 License Instructions 847 Common Attributes for General Instructions 849 Math status flags 849 Immediate values 850 Data conversions 861 Elementary data types 861 Pseudo-operand initialization 866 Time and date data types 869 GSV and SSV objects that support time and date data types 861 FBD Functions 862 Index through arrays 863 Bit Addressing 865 Mori fault types and codes 865 Function Block Ktributes 867 Choose the Function Block Elements 867 Choose the Function Block Ktributes 867	String to REAL (STOR)	
Breakpoints (BPT) 839 Tracepoints (IPT) 842 License Instructions. 847 License Validation (LV) 847 Common Attributes for General Instructions. 849 Math status flags. 849 Math status flags. 849 Immediate values. 850 Data conversions. 851 Elementary data types. 856 Time and date data types. 856 SV and SSV objects that support time and date data types. 860 Floating Point Values. 861 FBD Functions. 862 Index through arrays. 863 Bit Addressing. 865 Minor fault types and codes. 865 Function Block Attributes. 867 Choose the Function Block Elements. 867 Latching Data. 868	Upper Case (UPPER)	
Tracepoints (TPT)	Debug Instructions	
License Instructions 847 License Validation (LV) 847 Common Attributes for General Instructions 849 Math status flags 849 Immediate values 850 Data conversions 851 Elementary data types 854 Pseudo-operand initialization 856 Time and date data types 856 GSV and SSV objects that support time and date data types 860 Floating Point Values 861 FBD Functions 862 Index through arrays 863 Bit Addressing 864 Major fault types and codes 865 Function Block Attributes 867 Choose the Function Block Elements 867 License 867 Choose the Function Block Elements 867 License 867 License 867 Componention Block Elements 867 License 867 Componention Block Elements 867 License 867 License 867 License 867 L	Breakpoints (BPT)	
License Validation (LV) 847 Common Attributes for General Instructions 849 Math status flags 849 Immediate values 850 Data conversions 851 Elementary data types 854 Pseudo-operand initialization 856 Time and date data types 858 GSV and SSV objects that support time and date data types 861 FBD Functions 862 Index through arrays 863 Bit Addressing 864 Major fault types and codes 865 Function Block Attributes 867 Choose the Function Block Elements 867 Liching Data 868	Tracepoints (TPT)	
Common Attributes for General Instructions 949 Math status flags 949 Immediate values 850 Data conversions 851 Elementary data types 954 Pseudo-operand initialization 856 Time and date data types 958 GSV and SSV objects that support time and date data types 861 FBD Functions 862 Index through arrays 863 Bit Addressing 865 Function Block Attributes 867 Choose the Function Block Elements 867 Latching Data 868	License Instructions	
Math status flags 849 Immediate values 950 Data conversions 851 Elementary data types 854 Pseudo-operand initialization 858 GSV and SSV objects that support time and date data types 861 FBD Functions 861 FBD Functions 862 Index through arrays 863 Bit Addressing 864 Major fault types and codes 865 Function Block Attributes 867 Choose the Function Block Elements 867 Latching Data 868	License Validation (LV)	
Immediate values 850 Data conversions 851 Elementary data types 854 Pseudo-operand initialization 856 Time and date data types 858 GSV and SSV objects that support time and date data types 860 Floating Point Values 861 FBD Functions 862 Index through arrays 863 Bit Addressing 865 Minor fault types and codes 865 Function Block Attributes 867 Choose the Function Block Elements 867 Latching Data 868	Common Attributes for General Instructions	
Data conversions 851 Elementary data types 854 Pseudo-operand initialization 856 Time and date data types 858 GSV and SSV objects that support time and date data types 860 Floating Point Values 861 FBD Functions 862 Index through arrays 863 Bit Addressing 864 Major fault types and codes 865 Function Block Attributes 867 Choose the Function Block Elements 867 Latching Data 868	Math status flags	
Elementary data types	Immediate values	
Pseudo-operand initialization .856 Time and date data types .858 GSV and SSV objects that support time and date data types .860 Floating Point Values .861 FBD Functions .862 Index through arrays .863 Bit Addressing .864 Major fault types and codes .865 Function Block Attributes .867 Choose the Function Block Elements .867 Latching Data .868	Data conversions	
Time and date data types 858 GSV and SSV objects that support time and date data types 860 Floating Point Values 861 FBD Functions 862 Index through arrays 863 Bit Addressing 864 Major fault types and codes 865 Function Block Attributes 867 Choose the Function Block Elements 867 Latching Data 868	Elementary data types	
GSV and SSV objects that support time and date data types. 860 Floating Point Values. 861 FBD Functions. 862 Index through arrays. 863 Bit Addressing. 864 Major fault types and codes. 865 Function Block Attributes. 867 Choose the Function Block Elements. 867 Latching Data. 868	Pseudo-operand initialization	
Floating Point Values	Time and date data types	
FBD Functions	GSV and SSV objects that support time and date data types	
Index through arrays	Floating Point Values	
Bit Addressing	FBD Functions	
Major fault types and codes	Index through arrays	
Minor fault types and codes	Bit Addressing	
Function Block Attributes	Major fault types and codes	
Choose the Function Block Elements	Minor fault types and codes	
Latching Data	Function Block Attributes	
	Choose the Function Block Elements	
Order of Execution		000
	Latching Data	

	Function Block Responses to Overflow Conditions	872
	Timing Modes	873
	Program/Operator Control	877
Stru	ictured Text Programming	879
	Structured Text Syntax	879
	Structured Text Components: Comments	881
	Structured Text Components: Assignments	881
	Specify a non-retentive assignment	883
	Assign an ASCII character to a string data member	883
	Structured Text Components: Expressions	884
	Use arithmetic operators and functions	885
	Use bitwise operators	886
	Use logical operators	886
	Use relational operators	887
	Structured Text Components: Instructions	889
	Structured Text Components: Constructs	890
	Character string literals	890
	String Types	892
	CASE_OF	892
	FOR_DO	894
	IF_THEN	897
	REPEAT_UNTIL	899
	WHILE_DO	902

Preface

This manual provides a programmer with details about the available General, Motion, Process, and Drives instruction set for a Logix-based controller.

If you design, program, or troubleshoot safety applications that use GuardLogix controllers, refer to the GuardLogix Safety Application Instruction Set Safety Reference Manual, publication 1756-RM095.

This manual is one of a set of related manuals that show common procedures for programming and operating Logix 5000 controllers.

For a complete list of common procedures manuals, refer to the Logix 5000 Controllers Common Procedures Programming Manual, publication 1756-PM001.

The term Logix 5000 controller refers to any controller based on the Logix 5000 operating system. Rockwell Automation recognizes that some of the terms that are currently used in our industry and in this publication are not in alignment with the movement toward inclusive language in technology. We are proactively collaborating with industry peers to find alternatives to such terms and making changes to our products and content. Please excuse the use of such terms in our content while we implement these changes.

Studio 5000 environment

The Studio 5000 Automation Engineering & Design Environment[®] combines engineering and design elements into a common environment. The first element is the Studio 5000 Logix Designer[®] application. The Logix Designer application is the rebranding of RSLogix 5000[®] software and will continue to be the product to program Logix 5000[™] controllers for discrete, process, batch, motion, safety, and drive-based solutions.

The Studio 5000[®] environment is the foundation for the future of Rockwell Automation[®] engineering design tools and capabilities. The Studio 5000 environment is the one place for design engineers to develop all elements of their control system.

Instruction Locator

Use this locator to find the applicable Logix5000 controllers instruction manual for each instruction.

Logix5000 Controllers General Instructions Reference Manual 1756-RM003	Logix5000 Controllers Advanced Process Control and Drives and Equipment Phase and Sequence Instructions Reference Manual 1756-RM006	Logix5000 Controllers Motion Instructions Reference Manual MOTION-RM002	PlantPAx Process Control Instructions PROCES-RM215
Absolute Value (ABS)	Alarm (ALM)	Master Driven Coordinated Control (MDCC)	Process Analog HART (PAH)
Add (ADD)	Attach to Equipment Phase (PATT)	Motion Apply Axis Tuning (MAAT)	Process Analog Input (PAI)
Analog Alarm (ALMA)	Attach to Equipment Sequence (SATT)	Motion Apply Hookup Diagnostics (MAHD)	Process Dual Sensor Analog Input (PAID)
Always False (AFI)	Coordinated Control (CC)	Motion Arm Output Cam (MAOC)	Process Multi Sensor Analog Input (PAIM)
Arc Cosine (ACOS)	D Flip-Flop (DFF)	Motion Arm Registration (MAR)	Process Analog Output (PAO)
Arc Sine (ASIN)	Deadtime (DEDT)	Motion Arm Watch (MAW)	Process Boolean Logic (PBL)
Arc Tangent (ATAN)	Derivative (DERV)	Motion Axis Fault Reset (MAFR)	Process Command Source (PCMDSRC)

Logix5000 Controllers General Instructions Reference Manual 1756-RM003	Logix5000 Controllers Advanced Process Control and Drives and Equipment Phase and Sequence Instructions Reference Manual 1756-RM006	Logix5000 Controllers Motion Instructions Reference Manual MOTION-RM002	PlantPAx Process Control Instructions PROCES-RM215
ASCII Chars in Buffer (ACB)	Detach from Equipment Phase (PDET)	Motion Axis Gear (MAG)	Process Discrete 2-, 3-, or 4-State Device (PD4SD)
ASCII Clear Buffer (ACL)	Detach from Equipment Sequence (SDET)	Motion Axis Home (MAH)	Process Deadband Controller (PDBC)
ASCII Handshake Lines (AHL)	Discrete 3-State Device (D3SD)	Motion Axis Jog (MAJ)	Process Discrete Input (PDI)
ASCII Read (ARD)	Discrete 2-State Device (D2SD)	Motion Axis Move (MAM)	Process Discrete Output (PDO)
ASCII Read Line (ARL)	Enhanced PID (PIDE)	Motion Axis Position Cam (MAPC)	Process Dosing (PDOSE)
ASCII Test for Buffer Line (ABL)	Enhanced Select (ESEL)	Motion Axis Stop (MAS)	Process Analog Fanout (PFO)
ASCII Write (AWT)	Equipment Phase Clear Failure (PCLF)	Motion Axis Time Cam (MATC)	Process High or Low Selector (PHLS)
ASCII Write Append (AWA)	Equipment Phase Command (PCMD)	Motion Axis Shutdown (MASD)	Process Interlocks (PINTLK)
Bit Field Distribute (BTD)	Equipment Phase External Request (PXRQ)	Motion Axis Shutdown Reset (MASR)	Process Lead Lag Standby Motor Group (PLLS)
Bit Field Distribute with Target (BTDT)	Equipment Phase Failure (PFL)	Motion Calculate Cam Profile (MCCP)	Process Motor (PMTR)
Bit Shift Left (BSL)	Equipment Phase New Parameters (PRNP)	Motion Coordinated Path Move (MCPM)	Process Permissives (PPERM)
Bit Shift Right (BSR)	Equipment Phase Override Command (POVR)	Motion Calculate Slave Values (MCSV)	Process Proportional + Integral + Derivative (PPID)
Bitwise And (AND)	Equipment Phase Paused (PPD)	Motion Coordinated Transform with Orientation (MCTO)	Process Pressure/Temperature Compensated Flow (PPTC)
Bitwise (NOT)	Equipment Sequence Assign Sequence Identifier (SASI)	Motion Calculate Transform Position (MCTP)	Process Restart Inhibit (PRI)
Bitwise (OR)	Equipment Sequence Clear Failure (SCLF)	Motion Calculate Transform Position with Orientation (MCTPO)	Process Run Time and Start Counter (PRT)
Boolean AND (BAND)	Equipment Sequence command (SCMD)	Motion Change Dynamics (MCD)	Process Tank Strapping Table (PTST)
Boolean Exclusive OR (BXOR)	Equipment Sequence Override (SOVR)	Motion Coordinated Change Dynamics (MCCD)	Process Valve (PVLV)
Boolean NOT (BNOT)	Function Generator (FGEN)	Motion Coordinated Circular Move (MCCM)	Process Valve Statistics (PVLVS)
Boolean OR (BOR)	High Pass Filter (HPF)	Motion Coordinated Linear Move (MCLM)	
Break (BRK)	High/Low Limit (HLL)	Motion Coordinated Shutdown (MCSD)	
Breakpoints (BPT)	HMI Button Control (HMIBC)	Motion Coordinated Shutdown Reset (MCSR)	
Clear (CLR)	Integrator (INTG)	Motion Coordinated Stop (MCS)	
Compare (CMP)	Internal Model Control (IMC)	Motion Coordinated Transform (MCT)	
Convert to BCD (TO_BCD)	JK Flip-Flop (JKFF)	Motion Direct Drive Off (MDF)	
Convert to Integer (BCD_TO)	Lead-Lag (LDLG)	Motion Direct Drive On (MDO)	
Copy File (COP), Synchronous Copy File (CPS)	Low Pass Filter (LPF)	Motion Direct Start (MDS)	
Cosine (COS)	Maximum Capture (MAXC)	Motion Disarm Output Cam (MDOC)	
Compute (CPT)	Minimum Capture (MINC)	Motion Disarm Registration (MDR)	
Count down (CTD)	Modular Multivariable Control (MMC)	Motion Disarm Watch (MDW)	
Count up (CTU)	Moving Average (MAVE)	Motion Group Shutdown (MGSD)	
Count up/down CTUD	Moving Standard Deviation (MSTD)	Motion Group Shutdown Reset (MGSR)	
Data Transition (DTR)	Multiplexer (MUX)	Motion Group Stop (MGS)	
Degrees (DEG)	Notch Filter (NTCH)	Motion Group Strobe Position (MGSP)	
Diagnostic Detect (DDT)	Phase State Complete (PSC)	Motion Redefine Position (MRP)	
Digital Alarm (ALMD)	Position Proportional (POSP)	Motion Run Axis Tuning (MRAT)	
DINT To String (DTOS)	Proportional + Integral (PI)	Motion Run Hookup Diagnostics (MRHD)	
Divide (DIV)	Pulse Multiplier (PMUL)	Motion Servo Off (MSF)	
End of Transition (EOT)	Ramp/Soak (RMPS)	Motion Servo On (MSO)	
Equal to (EQ)	Rate Limiter (RLIM)		
File Arithmetic (FAL)	Reset Dominant (RESD)		
File Bit Comparison (FBC)	Scale (SCL)		
FIFO Load (FFL)	S-Curve (SCRV)		
FIFO Unload (FFU)	Second-Order Controller (SOC)		
File Average (AVE)	Second-Order Lead Lag (LDL2)		
File Standard Deviation (STD)	Select (SEL)		
File Fill (FLL)	Selected Negate (SNEG)		
File Sort (SRT)	Selected Summer (SSUM)		
Find String (FIND)	Set Dominant (SETD)		
For (FOR)	Split Range Time Proportional (SRTP)		
File Search and Compare (FSC)	Totalizer (TOT)		

Logix5000 Controllers General Instructions Reference Manual 1756-RM003	Logix5000 Controllers Advanced Process Control and Drives and Equipment Phase and Sequence Instructions Reference Manual 1756-RM006	Logix5000 Controllers Motion Instructions Reference Manual MOTION-RM002	PlantPAx Process Control Instructions PROCES-RM215
Get System Value (GSV) and Set System Value (SST)	Up/Down Accumulator (UPDN)		
Greater Than or Equal to (GE)			
Greater than (GT)			
Insert String (INSERT)			
Immediate Output (IOT)			
Is Infinity (ISINF)			
ls Not a Number (IsNAN)			
Jump to Label (JMP) and Label (LBL)			
Jump to Subroutine (JSR), Subroutine (SBR), and			
Return (RET)			
Jump to External Routine (JXR)			
Less Than (LT)			
Less Than or Equal to (LE)			
LIFO Load (LFL)			
LIFO Unload (LFU)			
License Validation (LV)			
Limit (LIMIT)			
Log Base (LOG)			
Lower to Case (LOWER)			
Masked Move (MVM)			
Masked Move with Target (MVMT)			
Master Control Reset (MCR)			
Masked Equal to (MEQ)			
Message (MSG)			
Middle String (MID)			
Modulo (MOD)			
Move (MOVE)			
Multiply (MUL)			
Natural Log (LN)			
Negate (NEG)			
Not Equal to (NE)			
No Operation (NOP)			
One Shot (ONS)			
One Shot Falling (OSF)			
One Shot Falling with Input (OSFI)			
One Shot Rising (OSR)			
One Shot Rising with Input (OSRI)			
Output Energize (OTE)			
Output Latch (OTL)			
Output Unlatch (OTU)			
Proportional Integral Derivative (PID)			
Radian (RAD)			
Real to String (RTOS)			
Reset (RES)			
Reset SFC (SFR)			
Return (RET)			
Retentive Timer On (RTO)			
Retentive Timer On with Reset (RTOR)			
Pause SFC (SFP)			
Size In Elements (SIZE)			
Sequencer Input (SQI)			
Sequencer Load (SQL)			
Sequencer Output (SQO)			l

Logix5000 Controllers General Instructions Reference Manual 1756-RM003	Logix5000 Controllers Advanced Process Control and Drives and Equipment Phase and Sequence Instructions Reference Manual 1756-RM006	Logix5000 Controllers Motion Instructions Reference Manual MOTION-RM002	PlantPAx Process Control Instructions PROCES-RM215
Sine (SIN)			
Square Roost (SQRT)			
String Concatenate (CONCAT)			
String Delete (DELETE)			
String to DINT (STOD)			
String to REAL (STOR)			
Swap Byte (SWPB)			
Subtract (SUB)			
Tangent (TAN)			
Timer Off Delay (TOF)			
Timer Off Delay with Reset (TOFR)			
Timer On Delay (TON)			
Timer On Delay with Reset (TONR)			
Temporary End (TND)			
Tracepoints (TPT)			
Trigger Event Task (EVENT)			
Truncate (TRUNC)			
Unknown Instruction (UNK)			
Upper Case (UPPER)			
User Interrupt Disable (UID)/User Interrupt Enable (UIE)			
X to the Power of Y (EXPT)			
Examine if Closed (XIC)			
Examine If Open (XIO)			
Bitwise Exclusive (XOR)			

Additional resources

These documents contain additional information concerning related Rockwell Automation products.

Resource	Description
Industrial Automation Wiring and Grounding Guidelines, publication, 1770-4.1	Provides general guidelines for installing a Rockwell Automation industrial system.
Rockwell Automation product certifications	Provides declarations of conformity, certificates, and other certification details.

View or download publications at https://www.rockwellautomation.com/en-us/support/documentation/literature-library.html. To order paper copies of technical documentation, contact a local Rockwell Automation distributor or sales representative.

Legal notices

Rockwell Automation publishes legal notices, such as privacy policies, license agreements, trademark disclosures, and other terms and conditions on the Legal Notices page of the Rockwell Automation website.

Software and Cloud Services Agreement

Review the Rockwell Automation Software and Cloud Services Agreement here.

Open Source Software Licenses

The software included in this product contains copyrighted software that is licensed under one or more open source licenses.

You can view a full list of all open source software used in this product and their corresponding licenses at this URL:

Studio 5000 Logix Designer Open Source Attribution List

You may obtain Corresponding Source code for open source packages included in this product from their respective project web site(s). Alternatively, you may obtain complete Corresponding Source code by contacting Rockwell Automation via the **Contact** form on the Rockwell Automation website: http://www.rockwellautomation.com/global/about-us/contact.page. Please include "Open Source" as part of the request text.

Alarm Instructions

Use the alarm instructions to monitor and control alarm conditions.

The Logix-based alarm instructions instructions integrate alarming between the RSView[®] SE applications and Logix 5000 controllers.

Available Instructions

Ladder Diagram

ALMD on page 50	ALMA on page 22	ASO on page 19
ALIID OII page 30	ALTIA UTI page ZZ	ASU UII page 13

Function Block

ALMD on page 50

Structured Text

ALMD on page 50	ALMA on page 22	ASO on page 19	
lf:		Use the:	
Providing alarming for any discred diagram, function block, or struction block, or str		Digital Alarm (ALMD) instruction	
Providing level and rate-of-change alarming for any analog signal for ladder diagram, function block, diagram and structured text		Analog Alarm (ALMA) instruction	
Issuing a specified operation to a specified alarm set	all alarm conditions of the	Alarm Set Operation (ASO) instruction	

Alarm Set Operation (ASO)

This information applies to the Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The Alarm Set Operation (ASO) instruction issues a specified operation to all alarm conditions of the specified alarm set. The Alarm Set Operation instruction is used to initiate asynchronous execution of an alarm operation for all alarm conditions of the specified alarm set. The instruction iterates through alarm conditions of the specified alarm set and sets an internal flag requesting the operation execution for each of the conditions. The internal flags have the same purpose and priority as the existing user accessible Progxxx bits and will be processed for all the alarm conditions of the specified alarm set.

Available Languages

Ladder Diagram

ASO	
Alarm Set Operation	
Alarm Set	?
Alarm Set Control	?
Operation	?

Function Block Diagram

This instruction is not available in Function Block Diagram.

Structured Text

ASO (Alarm Set, Alarm Set Control, Operation)Operands

IMPORTANT: Unexpected operation may occur if:

- The same tag (ALARM_SET_CONTROL) is used as a parameter for more than one instruction invocation.
- The .LastState structure member is modified by a user application program.

WARNING: The Alarm Set Control structure contains internal state information. If any of the configuration operands are changed while in run mode, accept the pending edits and cycle the controller mode from Program to Run for the changes to take effect.

The following table provides operands used for configuring the instruction.

Operand	Data Type	Format	Description
Alarm Set	ALARM_SET	AlarmSet	The ALARM_SET structure
			represents alarm conditions
			that are operated on by this
			instruction.
Alarm Set Control	ALARM_SET_CONTROL	tag	This data type contains
			three BOOL flags:
			• EnableIn
			• EnableOut
			LastState
			The instruction reacts
			to the edge (transition
			of .EnableIn from false to true)
			instead of the level.
			EnableOut is always set
			to .EnableIn.
			The request to perform
			the instruction operation
			have the same priority
			as ProgXXX flags.

Operand	Data Type	Format	Description
Operation		immediate	This operand can be selected
			from the list or entered as an
			integer value:
			0 - Acknowledge
			1 - Reset
			2 - Enable
			3 - Disable
			4- Unshelve
			5 - Suppress
			6 - Unsuppress
			7 - ResetAlarmCount

Affects Math Status FlagsNoMajor/Minor FaultsNone specific to this instruction. See Index through arrays on page 863 for array-indexing faults.Execution

Condition/State	Action Taken
Prescan	The instruction clears all ALARM_SET structure members.
Rung-condition -in is false	The instruction clears .EnableOut and .LastState structure members.
Rung-condition-in is true	If .LastState is false then the instruction initiates the operation and sets .LastState structure member to true. The .EnableOut structure member is always set to true.
Postscan	The instruction clears all ALARM_SET structure members.

OperationThe Alarm Set Operation instruction initiates asynchronous execution of one of the following alarm operations on the specified alarm set:

- Acknowledge
- Reset
- Enable
- Disable
- Unshelve
- Suppress
- Unsuppress
- ResetAlarmCount

The instruction iterates through all alarm conditions which are included in the specified alarm set or in the nested alarm sets to set an internal flag representing the request to perform the required operation on a particular alarm condition. The operation is initiated for all alarm conditions which are iterated by the instruction with the following exceptions:

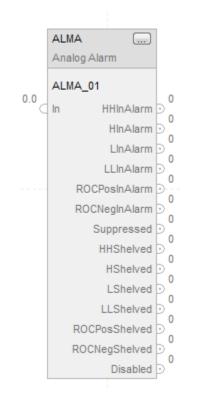
- Alarm Conditions which are configured not to support alarm operations
- Alarm Conditions which are configured as not used

When an alarm operation is initiated for a particular alarm condition by the instruction, the operation is performed during the next alarm periodic evaluation of the alarm condition. When the instruction is called multiple times for the same Alarm Set to initiate contradictory alarm operations, the last requested operation is always applied to all alarm conditions in the Alarm Set. The alarm operations initiated for the Alarm Set may be applied to the conditions before

the last requested operation is performed. When an Alarm Condition is periodically evaluated, the requests to perform particular alarm operations have the same priority as the requests to perform alarm operations initiated via user accessible Progxxx flags. It means that if a request to perform an alarm operation is generated by the instruction, then it is handled as if the corresponding Progxxx flag is set and the same rules used to resolve conflicting requests specified for ProgXXX flags are used to resolve conflicts between the instruction requests and requests made via Progxxx flags. The Alarm Set Operation instruction initiates the required alarm operation only when it detects the transition of .EnableIn value from false to true. In order to detect the transition, .LastState structure member is used to store .EnableIn value from the previous instruction execution. See the Execution section above.

Tip: If the Alarm set provided as the instruction parameter contains an excessive number of alarm conditions, then the execution time of the ASO instruction can increase significantly.

Analog Alarm (ALMA)


This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

The Analog Alarm (ALMA) instruction provides level and rate-of-change alarming for any analog signal.

Ladder Diagram

ALMA		
Analog Alar	m	
ALMA	myAnalogAlarm 📖	-(HHInAlarm)
In	analog_Input	-(HInAlarm)
	0.0 🖛	-(LInAlarm)
ProgAckAll	analog_ack	-(LLInAlarm)
	0 🔶	-(ROCPosInAlarm)-
ProgDisable	analog_Disable	-(ROCNegInAlarm)-
	0 🕈	-(HHShelved)-
ProgEnable	analog_Enable	-(HShelved)
	0 🕈	-(LShelved)
HHLimit	0.0 🖛	-(LLShelved)
HLimit	0.0 🗢	-(ROCPosShelved)-
LLimit	0.0 🗢	-(ROCNegShelved)-
LLLimit	0.0 🗢	-(Suppressed)-
		-(Disabled)
		-(InstructFault)

Function Block

Structured Text

ALMA (ALMA, In, ProgAckAll, ProgDisable, ProgEnable)

Operands

Ladder Diagram

Operand	Туре	Format	Description
ALMA	ALARM_ANALOG	Structure	ALMA structure
In	REAL	Tag	The alarm input value, which is
	DINT	Immediate	compared with alarm limits to
	5		detect the alarm condition.
	INT		
	SINT		
ProgAckAll	BOOL	Tag	On transition from False
		Immediate	to True, acknowledges all
		IIIIIIeulate	alarm conditions that require
			acknowledgement.
ProgDisable	BOOL	Tag	When True, disables alarm
		Immediate	(does not override Enable
		Immediate	Commands).

ProgEnable	BOOL	Tag	When True, enables alarm
			(takes precedence over
		Immediate	Disable commands).

Function Block

Operand	Туре	Format	Description
ALMA tag	ALARM_ANALOG	structure	ALMA structure

Structured Text

Operand	Туре	Format	Description
ALMA	ALARM_ANALOG	Structure	ALMA structure
In	REAL	Tag	The alarm input value, which is
	DINT	Immediate	compared with alarm limits to
	2		detect the alarm condition.
	INT		
	SINT		
ProgAckAll	BOOL	Tag	On transition from False
		Immediate	to True, acknowledges all
			alarm conditions that require
			acknowledgement.
ProgDisable	BOOL	Tag	When True, disables alarm
		Immediate	(does not override Enable
		IIIIIIeulate	Commands).
ProgEnable	BOOL	Tag	When True, enables alarm
		Immediate	(takes precedence over
		mmeuldle	Disable commands).

See Structured Text Syntax on page 879 for more information on the syntax of expressions within the structured text.

ALMA Structure

Input Parameters

Input Parameter	Data Type	Description
EnableIn	BOOL	Ladder Diagram:
		Corresponds to the rung state. If false,
		the instruction does not execute and
		outputs are not updated.
		Structured Text:
		If false, the instruction does not execute
		and outputs are not updated.
		Default is set.

Input Parameter	Data Type	Description
		Function Block:
		If false, the instruction does not execute
		and outputs are not updated.
		Default is set.
In	REAL	The alarm input value, which is compared
		with alarm limits to detect the alarm
		condition.
		Default = 0.0.
		Ladder Diagram:
		Copied from instruction operand.
		Structured Text:
		Copied from instruction operand.
InFault	BOOL	Bad health indicator for the input. The
		user application may set InFault to
		indicate the input signal has an error.
		When set, the instruction sets InFaulted
		(Status.1). When cleared to false, the
		instruction clears InFaulted to false
		(Status.1). In either case, the instruction
		continues to evaluate In for alarm
		conditions.
		Default is false (good health).
HHEnabled	BOOL	High High alarm condition detection. Set
		to true to enable detection of the High
		High alarm condition. Clear to false to
		make detection unavailable for the High
		High alarm condition.
		Default is set.
HEnabled	BOOL	High alarm condition detection. Set to
		true to enable detection of the High
		alarm condition. Clear to false to make
		detection unavailable for the High alarm
		condition.
		Default is set.
LEnabled	BOOL	Low alarm condition detection. Set to
		true to enable detection of the Low
		alarm condition. Clear to false to make
		detection unavailable for the Low alarm
		condition.
		Default is set.
LLEnabled	BOOL	Low Low alarm condition detection. Set to
		true to enable detection of the Low Low
		alarm condition. Clear to false to make

Input Parameter	Data Type	Description
		detection unavailable for the Low Low
		alarm condition.
		Default is set.
AckRequired	BOOL	Specifies whether alarm acknowledgmer
		is required. When set to true,
		acknowledgment is required. When
		cleared to false, acknowledgment is
		not required and HHAcked, HAcked,
		LAcked, LLAcked, ROCPosAcked, and
		ROCNegAcked are always set to true
		Default is true.
ProgAckAll	BOOL	Set to true by the user program to
-		acknowledge all alarm conditions. Takes
		effect only if any alarm condition is
		unacknowledged. Requires a false-to-tru
		transition.
		Default is false.
		Ladder Diagram:
		Copied from the instruction operand.
		Structured Text:
		Copied from the instruction operand.
OperAckAll	BOOL	Set to true by the operator interface
	5002	to acknowledge all alarm conditions.
		Takes effect only if any alarm condition
		is unacknowledged. The alarm instruction
		clears this parameter to false.
		Default is false.
HHProgAck	BOOL	High High program acknowledge. Set to
ППТОДАСК	DOOL	true by the user program to acknowledg
		a High High condition. Takes effect only
		the alarm condition is unacknowledged.
		Requires a false -to-true transition.
		Default is false.
HHOperAck	BOOL	High High operator acknowledge. Set
		to true by the operator interface to
		acknowledge a High High condition.
		Takes effect only if the alarm condition
		unacknowledged. The alarm instruction
		clears this parameter to false.
		Default is false.
HProgAck	BOOL	High program acknowledge. Set to true b
III I UQAUN	DOOL	ingii program acknowieuge. Set to true t
		the user program to acknowledge a High

Input Parameter	Data Type	Description
		condition is unacknowledged. Requires a false-to-true transition. Default is false.
HOperAck	BOOL	High operator acknowledge. Set to true by the operator interface to acknowledge a High condition. Takes effect only if the alarm condition is unacknowledged. The alarm instruction clears this parameter to false. Default is false.
LProgAck	BOOL	Low program acknowledge. Set to true by the user program to acknowledge a Low condition. Takes effect only if the alarm condition is unacknowledged. Requires a false-to-true transition. Default is false.
LOperAck	BOOL	Low operator acknowledge. Set to true by the operator interface to acknowledge a Low condition. Takes effect only if the alarm condition is unacknowledged. The alarm instruction clears this parameter to false. Default is false.
LLProgAck	BOOL	Low Low program acknowledge. Set to true by the user program to acknowledge a Low Low condition. Takes effect only if the alarm condition is unacknowledged. Requires a false-to-true transition. Default is false.
LLOperAck	BOOL	Low Low operator acknowledge. Set to true by the operator interface to acknowledge a Low Low condition. Takes effect only if the alarm condition is unacknowledged. The alarm instruction clears this parameter false. Default is false.
ROCPosProgAck	BOOL	Positive rate of change program acknowledge. Set to true by the user program to acknowledge a positive rate-of-change condition. Requires a false-to-true transition while the alarm condition is unacknowledged. Default is false.

Input Parameter	Data Type	Description
ROCPosOperAck	BOOL	Positive rate of change operator
		acknowledge. Set to true by the operator
		interface to acknowledge a positive
		rate-of-change condition. Requires a
		false-to-true transition while the alarm
		condition is unacknowledged. The alarm
		instruction sets this parameter to false.
		Default is false.
ROCNegProgAck	BOOL	Negative rate of change program
		acknowledge. Set to true by the user
		program to acknowledge a negative
		rate-of-change condition. Requires a
		false-to-true transition while the alarm
		condition is unacknowledged.
		Default is false.
ROCNegOperAck	BOOL	Negative rate of change operator
		acknowledge. Set to true by the operator
		interface to acknowledge a negative
		rate-of-change condition. Requires a
		false-to-true transition while the alarm
		condition is unacknowledged. The alarm
		instruction clears this parameter to false
		Default is false.
ProgSuppress	BOOL	Set to true by the user program to
		suppress the alarm.
		Default is cleared.
OperSuppress	BOOL	Set to true by the operator interface to
		suppress the alarm. The alarm instruction
		clears this parameter to false.
		Default is false.
ProgUnsuppress	BOOL	Set to true by the user program to
		unsuppress the alarm. Takes precedence
		over Suppress commands.
		Default is false.
OperUpeupproce	BOOL	
OperUnsuppress	DUUL	Set to true by the operator interface to
		unsuppress the alarm. Takes precedence
		over Suppress commands. The alarm
		instruction sets this parameter to false.
		Default is false.
HHOperShelve	BOOL	High-high operator shelve. Set to true
		by the operator interface to shelve or
		reshelve a high-high condition. Requires

Input Parameter	Data Type	Description
		a false-to-true transition. The alarm
		instruction clears this parameter to false
		Default is false.
		Unshelve commands take precedence
		over Shelve commands.
		Shelving an alarm postpones alarm
		processing. It is like suppressing an
		alarm, except that shelving is time
		limited. If an alarm is acknowledged whi
		it is shelved, it remains acknowledged
		even if it becomes active again. It
		becomes unacknowledged when the
		shelve duration ends.
HOperShelve	BOOL	High operator shelve. Set to true by the
		operator interface to shelve or reshelve
		high condition. Requires a transition from
		false in one program scan to true in the
		next program scan. The alarm instructio
		clears this parameter to false.
		Default is false.
		Unshelve commands take precedence
		over Shelve commands.
LOperShelve	BOOL	Low operator shelve. Set to true by the
		operator interface to shelve or reshelve
		a low condition. Requires a transition
		false in one program scan to true in the
		next program scan. The alarm instructio
		clears this parameter to false.
		Default is false.
		Unshelve commands take precedence
		over Shelve commands.
LLOperShelve	BOOL	Low-low operator shelve. Set to true
	2002	by the operator interface to shelve or
		reshelve a low-low condition. Requires a
		transition from false in one program sca
		to true in the next program scan. The
		alarm instruction clears this parameter
		false.
		Default is false.
		Unshelve commands take precedence
		over Shelve commands.
ROCPosOperShelve	BOOL	Positive rate-of-change operator
		shelve. Set to true by the operator

Input Parameter	Data Type	Description
		interface to shelve or reshelve a positive rate-of-change condition. Requires a transition from false in one program scan to true in the next program scan. The alarm instruction clears this parameter t false. Default is false. Unshelve commands take precedence over Shelve commands.
ROCNegOperShelve	BOOL	Negative rate-of-change operator shelve. Set to true by the operator interface to shelve or reshelve a negative rate-of-change condition. Requires a transition from false in one program scan to true in the next program scan. The alarm instruction clears this parameter t false. Default is false. Unshelve commands take precedence over Shelve commands.
ProgUnshelveAll	BOOL	Set to true by the user program to unshelve all conditions on this alarm. If both shelve and unshelve are true, unshelve commands take precedence over shelve commands. Default is false.
HHOperUnshelve	BOOL	High-high operator unshelve. Set to true by the operator interface to unshelve a high-high condition. The alarm instructio clears this parameter to false. If both shelve and unshelve are true, unshelve commands take precedence over shelve commands. Default is false.
HOperUnshelve	BOOL	High operator unshelve. Set to true by the operator interface to unshelve a high condition. The alarm instruction clears this parameter to false. If both shelve an unshelve are true, unshelve commands take precedence over shelve commands Default is false.
LOperUnshelve	BOOL	Low operator unshelve. Set to true by the operator interface to unshelve a low condition. The alarm instruction clears

Input Parameter	Data Type	Description
		this parameter to false. If both shelve and unshelve are true, unshelve commands take precedence over shelve commands. Default is false.
LLOperUnshelve	BOOL	Low-low operator unshelve. Set to true by the operator interface to unshelve a low-low condition. The alarm instruction clears this parameter to false. If both shelve and unshelve are true, unshelve commands take precedence over shelve commands. Default is false.
ROCPosOperUnshelve	BOOL	Positive rate-of-change operator unshelve. Set to true by the operator interface to unshelve a positive rate-of-change condition. The alarm instruction clears this parameter to false. If both shelve and unshelve are set, unshelve commands take precedence over shelve commands. Default is false.
ROCNegOperUnshelve	BOOL	Negative rate-of-change operator unshelve. Set to true by the operator interface to unshelve a negative rate-of-change condition. The alarm instruction clears this parameter to false If both shelve and unshelve are true, unshelve commands take precedence over shelve commands. Default is false.
ProgDisable	BOOL	Copied from the instruction operand.
OperDisable	BOOL	Set to true by the operator interface to disable the alarm. The alarm instruction clears this parameter to false. Default is false.
ProgEnable	BOOL	Copied from the instruction operand.
OperEnable	BOOL	Set to true by the operator interface to enable the alarm. Takes precedence over Disable command. The alarm instruction clears this parameter false. Default is false.
AlarmCountReset	BOOL	Set to true by the operator interface to reset the alarm counts for all conditions.

Input Parameter	Data Type	Description
		The alarm instruction clears this parameter to false. Default is false.
HHMinDurationEnable	BOOL	High-high minimum duration enable. Set to true to enable minimum duration time when detecting the high-high condition. Default is true.
HMinDurationEnable	BOOL	High minimum duration enable. Set to true to enable minimum duration timer when detecting the high condition. Default is true.
LMinDurationEnable	BOOL	Low minimum duration enable. Set to tru to enable minimum duration timer when detecting the low condition. Default is true.
LLMinDurationEnable	BOOL	Low-low minimum duration enable. Set to true to enable minimum duration timer when detecting the low-low condition. Default is true.
HHLimit	REAL	High High alarm limit. Valid = HLimit < HHLimit < maximum positive float. Default = 0.0.
HHSeverity	DINT	Severity of the High High alarm condition This does not affect processing of alarm by the controller, but can be used for sorting and filtering functions at the alarm subscriber. Valid = 11000 (1000 = most severe; 1 = least severe). Default = 500.
HLimit	REAL	High alarm limit. Valid = LLimit < HLimit < HHLimit. Default = 0.0.
HSeverity	DINT	Severity of the High alarm condition. This does not affect processing of alarms by the controller, but can be used for sorting and filtering functions at the alarm subscriber. Valid = 11000 (1000 = most severe; 1 = least severe). Default = 500.

Input Parameter	Data Type	Description
LLimit	REAL	Low alarm limit. Valid = LLLimit < LLimit < HLimit. Default = 0.0.
LSeverity	DINT	Severity of the Low alarm condition. This does not affect processing of alarms by the controller, but can be used for sorting and filtering functions at the alarm subscriber. Valid = 11000 (1000 = most severe; 1 = least severe). Default = 500.
LLLimit	REAL	Low Low alarm limit. Valid = maximum negative float < LLLimi < LLimit. Default = 0.0.
LLSeverity	DINT	Severity of the Low Low alarm condition. This does not affect processing of alarms by the controller, but can be used for sorting and filtering functions at the alarm subscriber. Valid = 11000 (1000 = most severe; 1 = least severe). Default = 500.
MinDurationPRE	DINT	Minimum duration preset (milliseconds) for an alarm level condition to remain true before the condition is marked as InAlarm and alarm notification is sent to clients. The controller collects alarm data as soon as the alarm condition is detected; so no data is lost while waiting to meet the minimum duration. Does not apply to rate-of-change conditions or to conditions for which minimum duration detection is disabled. MinDurationPRE only applies to the first excursion from normal in either direction. For example, once the High condition times out, the High High condition becomes active immediately, while a Low condition waits for the timeout period. Valid = 02147483647. Default = 0.

Input Parameter	Data Type	Description
ShelveDuration	DINT	Time duration (in minutes) for which a shelved alarm will be shelved. Minimum time is one minute. Maximum time is defined by MaxShelveDuration.
MaxShelveDuration	DINT	Maximum time duration (in minutes) for which an alarm can be shelved.
Deadband	REAL	Deadband for detecting that High High, High, Low, and Low Low alarm levels have returned to normal. A non-zero Deadband can reduce alarm condition chattering if the In value is continually changing but remaining near the level condition threshold. The Deadband value does not affect the transition to the InAlarm (active) state. Once a level condition is active, but before the condition returns to the inactive (normal) state, the In value must either: drop below the threshold minus the deadband (for High and High High conditions). DR rise above the threshold plus the deadband (for Low and Low Low conditions). The Deadband is not used to condition th Minimum Duration time measurement. Valid = 0 = Deadband < Span from first
ROCPosLimit	REAL	Default = 0.0. Limit for an increasing rate-of-change in units per second. Detection is enabled fo any value > 0.0 if ROCPeriod is also > 0.0. Valid = 0.0maximum possible float. Default = 0.0.
ROCPosSeverity	DINT	Severity of the increasing rate-of-change condition. This does not affect processin of alarms by the controller, but can be used for sorting and filtering functions at the alarm subscriber.

Input Parameter	Data Type	Description
		Valid = 11000 (1000 = most severe; 1 =
		least severe).
		Default = 500.
ROCNegLimit	REAL	Limit for a decreasing rate-of-change in
		units per second. Detection is enabled for
		any value > 0.0 if ROCPeriod is also > 0.0.
		Valid = 0.0maximum possible float.
		Default = 0.0.
ROCNegSeverity	DINT	Severity of the decreasing rate-of-chang
		condition. This does not affect processin
		of alarms by the controller, but can be
		used for sorting and filtering functions at
		the alarm subscriber.
		Valid = 11000 (1000 = most severe; 1 =
		least severe).
		Default = 500.
ROCPeriod	REAL	Time period in seconds for calculation
		(sampling interval) of the rate of change
		value. Each time the sampling interval
		expires, a new sample of In is stored, and
		ROC is re-calculated. Instead of an enable
		bit like other conditions in the analog
		alarm, the rate-of-change detection is
		enabled by putting any non-zero value in
		the ROCPeriod.
		Valid = 0.032767.0
		Default = 0.0.

Output Parameters

These output parameters are common to ladder logic.

Output Parameter	Data Type	Description
AnyInAlarmUnack	BOOL	Combined alarm active and acknowledged
		status. Set to true when any
		alarm condition is detected and
		unacknowledged. Cleared to false
		when all alarm conditions are inactive,
		acknowledged, or both.
HHInAlarm	BOOL	High High alarm condition status. Set
		to true when a High High condition is
		Active. Cleared to false when no High High
		condition exists.

Output Parameter	Data Type	Description
HInAlarm	BOOL	High alarm condition status. Set to true when a High condition is Active. Cleared to false when no High condition exists.
LInAlarm	BOOL	Low alarm condition status. Set to true when a Low condition is Active. Cleared t false when no Low condition exists.
LLInAlarm	BOOL	Low Low alarm condition status. Set to true when a Low Low condition is Active. Cleared to false when no Low Low condition exists.
ROCPosinAlarm	BOOL	Positive rate-of-change alarm condition status. Set to true when a positive rate-of-change condition exists. Cleared to false when no positive rate-of-change condition exists.
ROCNegInAlarm	BOOL	Negative rate-of-change alarm condition status. Set to true when a negative rate-of-change condition exists. Cleared to False when no negative rate-of-chang condition exists.
ROC	REAL	Calculated rate-of-change of the In value. This value is updated when the instruction is scanned following each elapsed ROCPeriod. The ROC value is used to evaluate the ROCPosInAlarm and ROCNegInAlarm conditions. ROC = (current sample of In – previous sample of In) / ROCPeriod
HHAcked	BOOL	High High condition acknowledged statu: Set to true when a High High condition is acknowledged. Always set to true when AckRequired is cleared to false. Cleared to false when a High High condition is no acknowledged.
HAcked	BOOL	High condition acknowledged status. Set to true when a High condition is acknowledged. Always set to true when AckRequired is cleared to false. Cleared to false when a High condition is not acknowledged.
LAcked	BOOL	Low condition acknowledged status. Set to true when a Low condition is acknowledged. Always set to true when

Output Parameter	Data Type	Description
		AckRequired is cleared to false. Cleared
		to false when a Low condition is not
		acknowledged.
LLAcked	BOOL	Low Low condition acknowledged status.
		Set to true when a Low Low condition
		is acknowledged. Always true when
		AckRequired is cleared to false. Cleared
		to false when a Low Low condition is not
		acknowledged.
ROCPosAcked	BOOL	Positive rate-of-change condition
		acknowledged status. Set to true when
		a positive rate-of-change condition
		is acknowledged. Always true when
		AckRequired is cleared to false. Cleared
		to false when a positive rate-of-change
		condition is not acknowledged.
ROCNegAcked	BOOL	Negative rate-of-change condition
		acknowledged status. Set to true when
		a negative rate-of-change condition is
		acknowledged. Always set to true when
		AckRequired is cleared to false. Cleared
		to false when a negative rate-of-change
		condition is not acknowledged.
HHInAlarmUnack	BOOL	Combined High High condition active
		and unacknowledged status. Set to true
		when the High High condition is active
		(HHInAlarm is true) and unacknowledged.
		Cleared to false when the High High
		condition is inactive, acknowledged, or
		both.
HInAlarmUnack	BOOL	Combined High condition active and
		unacknowledged status. Set to true when
		the High condition is active (HInAlarm is
		true) and unacknowledged. Cleared to
		false when the High condition is inactive,
		acknowledged, or both.
LInAlarmUnack	BOOL	Combined Low condition active and
		unacknowledged status. Set to true when
		the Low condition is active (LInAlarm is
		true) and unacknowledged. Cleared to
		false when the Low condition is inactive,
		acknowledged, or both.

Output Parameter	Data Type	Description
LLInAlarmUnack	BOOL	Combined Low Low condition active
		and unacknowledged status. Set to true
		when the Low Low condition is active
		(LLInAlarm is true) and unacknowledged
		Cleared to false when the Low Low
		condition is inactive, acknowledged, or
		both.
ROCPosInAlarmUnack	BOOL	Combined positive rate-of-change
		condition active and unacknowledged
		status. Set to true when the positive
		rate-of-change condition is active
		(ROCPosInAlarm is true) and
		unacknowledged. Cleared to false when
		the positive rate-of-change condition is
		inactive, acknowledged, or both.
	DUUI	
ROCNegInAlarmUnack	BOOL	Combined negative rate-of-change
		condition active and unacknowledged
		status. Set to true when the negative
		rate-of-change condition is active
		(ROCNegInAlarm is true) and
		unacknowledged. Cleared to false when
		the negative rate-of-change condition is
		inactive, acknowledged, or both.
Suppressed	BOOL	Suppressed status of the alarm. Set
		to true when the alarm is suppressed.
		Cleared to false when the alarm is not
		suppressed.
HHShelved	BOOL	High-high condition shelved status. Set
HHShelved	BOOL	High-high condition shelved status. Set to true when a high-high condition is
HHShelved	BOOL	to true when a high-high condition is
HHShelved	BOOL	to true when a high-high condition is
	BOOL	to true when a high-high condition is shelved. Cleared to false when high-high condition is unshelved.
		to true when a high-high condition is shelved. Cleared to false when high-high condition is unshelved. High condition shelved status. Set to tru
		to true when a high-high condition is shelved. Cleared to false when high-high condition is unshelved. High condition shelved status. Set to tru when a high condition is shelved. Cleare
HShelved		to true when a high-high condition is shelved. Cleared to false when high-high condition is unshelved. High condition shelved status. Set to tru when a high condition is shelved. Cleare to false when high condition is unshelve
HShelved	BOOL	to true when a high-high condition is shelved. Cleared to false when high-high condition is unshelved. High condition shelved status. Set to tru when a high condition is shelved. Cleare to false when high condition is unshelve Low condition shelved status. Set to true
HShelved	BOOL	to true when a high-high condition is shelved. Cleared to false when high-high condition is unshelved. High condition shelved status. Set to tru when a high condition is shelved. Cleare to false when high condition is unshelve Low condition shelved status. Set to true when a low condition is shelved. Cleared
HShelved LShelved	BOOL	to true when a high-high condition is shelved. Cleared to false when high-high condition is unshelved. High condition shelved status. Set to tru when a high condition is shelved. Cleare to false when high condition is unshelve Low condition shelved status. Set to tru when a low condition is shelved. Cleared to false when low condition is unshelved
HShelved LShelved	BOOL BOOL	to true when a high-high condition is shelved. Cleared to false when high-high condition is unshelved. High condition shelved status. Set to true when a high condition is shelved. Cleare to false when high condition is unshelved Low condition shelved status. Set to true when a low condition is shelved. Cleared to false when low condition is unshelved Low-low condition shelved status. Set to
HHShelved HShelved LShelved	BOOL BOOL	to true when a high-high condition is shelved. Cleared to false when high-high condition is unshelved. High condition shelved status. Set to true when a high condition is shelved. Cleare to false when high condition is unshelve Low condition shelved status. Set to true when a low condition is shelved. Cleared to false when low condition is unshelved Low-low condition shelved status. Set to true when a low-low condition is shelved
HShelved LShelved	BOOL BOOL	to true when a high-high condition is shelved. Cleared to false when high-high condition is unshelved. High condition shelved status. Set to true when a high condition is shelved. Cleare to false when high condition is unshelved Low condition shelved status. Set to true when a low condition is shelved. Cleared to false when low condition is unshelved Low-low condition shelved status. Set to true when a low-low condition is shelved Cleared to false when low-low condition
HShelved LShelved	BOOL BOOL	to true when a high-high condition is shelved. Cleared to false when high-high condition is unshelved. High condition shelved status. Set to true when a high condition is shelved. Cleare to false when high condition is unshelve Low condition shelved status. Set to true when a low condition is shelved. Cleared to false when low condition is unshelved Low-low condition shelved status. Set to true when a low-low condition is shelved

Output Parameter	Data Type	Description
		positive rate-of-change condition is
		shelved. Cleared to false when positive
		rate-of-change condition is unshelved.
ROCNegShelved	BOOL	Negative rate-of-change condition
		shelved status. Set to true when a
		negative rate-of-change condition is
		shelved. Cleared to false when negative
		rate-of-change condition is unshelved.
Disabled	BOOL	Disabled status of the alarm. Set to true
		when the alarm is unavailable (disabled).
		Cleared to false when the alarm is
		enabled.
Commissioned	BOOL	The commissioned bit is not used.
MinDurationACC	DINT	Not Used. Value is always O.
HHInAlarmTime	LINT	Timestamp when the ALMA instruction
		detected that the In value exceeded the
		High High condition limit for the most
		recent transition to the active state.
HHAlarmCount	DINT	The number of times the High High
		condition has been activated. If the
		maximum value is reached, the counter
		leaves the value at the maximum count
		value.
HInAlarmTime	LINT	Timestamp when the ALMA instruction
		detected that the In value exceeded the
		High condition limit for the most recent
		transition to the active state.
HAlarmCount	DINT	The number of times the High condition
		has been activated. If the maximum value
		is reached, the counter leaves the value
		at the maximum count value.
LInAlarmTime	LINT	Timestamp when the ALMA instruction
		detected that the In value exceeded the
		Low condition limit for the most recent
		transition to the active state.
LAlarmCount	DINT	The number of times the Low condition
		has been activated. If the maximum valu
		is reached, the counter leaves the value
		at the maximum count value.
LLInAlarmTime	LINT	Timestamp when the ALMA instruction
		detected that the In value exceeded the

Output Parameter	Data Type	Description
		Low Low condition limit for the most recent transition to the active state.
LLAlarmCount	DINT	The number of times the Low Low condition has been activated. If the maximum value is reached, the counter leaves the value at the maximum count value.
ROCPosInAlarmTime	LINT	Timestamp when the ALMA instruction detected that the In value exceeded the positive-rate-of-change condition limit for the most recent transition to the active state.
ROCPosInAlarmCount	DINT	The number of times the positive rate-of-change condition has been activated. If the maximum value is reached, the counter leaves the value at the maximum count value.
ROCNegInAlarmTime	LINT	Timestamp when the ALMA instruction detected that the In value exceeded the negative-rate-of-change condition limit for the most recent transition to the active state.
ROCNegAlarmCount	DINT	The number of times the negative rate-of-change condition has been activated. If the maximum value is reached, the counter leaves the value at the maximum count value.
AckTime	LINT	Timestamp of most recent condition acknowledgment. If the alarm does not require acknowledgment, this timestamp is equal to most recent condition alarm time.
RetToNormalTime	LINT	Timestamp of alarm returning to a norma state.
AlarmCountResetTime	LINT	Timestamp indicating when the alarm count was reset.
ShelveTime	LINT	Timestamp indicates when an alarm condition was shelved the last time. Set by controller when alarm condition is shelved. Alarm conditions can be shelved and unshelved many times. Each time

Output Parameter	Data Type	Description
		alarm condition is shelved the timestamp
		is set to current time.
UnshelveTime	LINT	Timestamp indicating when all alarm
		conditions are going to be unshelved.
		Value is set only when no alarm condition
		is shelved yet. The timestamp is
		determined as sum of the ShelveDuration
		time period and current time. If an alarm
		condition is unshelved programmatically
		or by an operator and no other alarm
		condition is shelved, then value is set to
		the current time.
Status	DINT	Combined status indicators:
		Status Flag CompactLo CompactLo
		gix 5370, gix 5380,
		ControlLo CompactLo
		gix 5570, gix 5480,
		Compact ControlLo
		GuardLogix gix 5580,
		5370, and Compact
		GuardLogix GuardLogix
		5570 5380, and
		controllers GuardLogix
		5580
		controllers
		Status.0 = X X
		InstructFa
		ult
		Status.1 = X X
		InFaulted
		Status.2 = X X
		SeverityInv
		Status.3 = X X
		AlarmLimits
		Inv
		Status.4 = X X
		Deadband
		Status.5 = X X
		ROCPosLimi
		tinv

Output Parameter	Data Type	Description
		Status.6 = X X
		ROCNegLim
		itInv
		Status.7 = X X
		ROCPeriod
		Inv
		Status.8 = - X
		Overflow
InstructFault (Status.0)	BOOL	Instruction error conditions exist. This
		is not a minor or major controller error.
		Check the remaining status bits to
		determine what occurred.
InFaulted (Status.1)	BOOL	User program has set InFault to indicate
		bad quality input data. Alarm continues to
		evaluate In for alarm conditions.
SeverityInv (Status.2)	BOOL	Alarm severity configuration is invalid.
		If severity <1, the instruction uses
		Severity = 1.
		If severity >1000, the instruction uses
		Severity = 1000.
AlarmLimitsInv (Status.3)	BOOL	Alarm Limit configuration is invalid (for
		example, LLimit < LLLimit). If invalid, the
		instruction clears all level conditions
		active bits. Until the fault is cleared, no
		new level conditions can be detected.
DeadbandInv (Status.4)	BOOL	Deadband configuration is invalid. If
		invalid, the instruction uses
		Deadband = 0.0.
		Valid = 0 = Deadband < Span from first
		enabled low alarm to the first enabled
		high alarm.
ROCPosLimitInv (Status.5)	BOOL	Positive rate-of-change limit invalid.
		If invalid, the instruction uses
		ROCPosLimit = 0.0, which makes positive
		rate-of-change detection unavailable.
ROCNegLimitInv (Status.6)	BOOL	Negative rate-of-change limit invalid.
		If invalid, the instruction uses
		ROCNegLimit = 0.0, which makes negativ
		rate-of-change detection unavailable.

Output Parameter	Data Type	Description
ROCPeriodInv (Status.7)	BOOL	Rate-of-change period invalid. If invalid,
		the instruction uses ROCPeriod = 0.0,
		which makes rate-of-change detection
		unavailable.
Overflow	BOOL	The Overflow bit is set to true when
(Status.8)		an overflow condition is detected. The
		overflow bit is cleared to false when the
		overflow condition has been corrected.
		Applies toL8 controllers for tables in
		topics on page only.

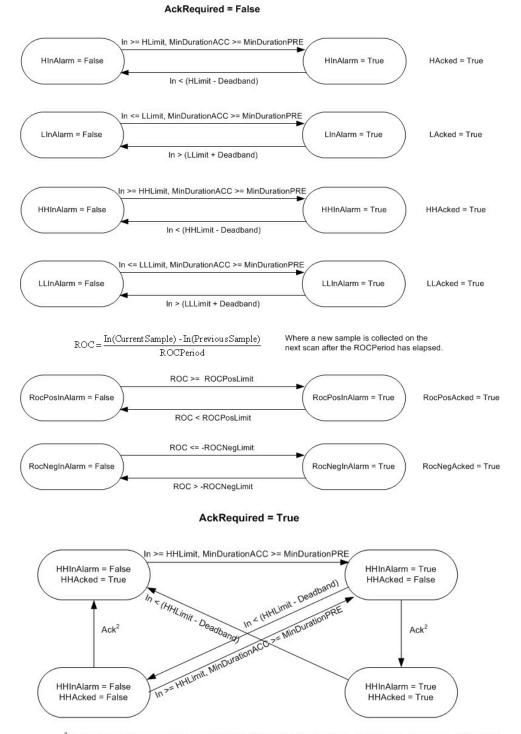
Connect a button to the OperShelve tag

The alarm instruction only processes the OperShelve tag on transition from cleared to set to prevent unwanted reshelving of the alarm. For example, if an operator presses a push button to shelve the alarm while the ProgUnshelve tag is set, the alarm is not shelved because the ProgUnshelve tag takes precedence. To shelve the alarm, the operator can release and press the push button again once ProgUnshelve is cleared.

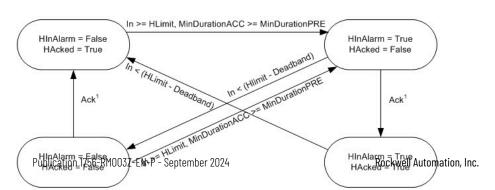
Affects Math Status Flags

Controllers	Affected Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Conditional
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

A minor fault will occur if:	Fault Type	Fault Code
The input value is INF or NAN for	4	4
CompactLogix 5370, ControlLogix		
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
only.		

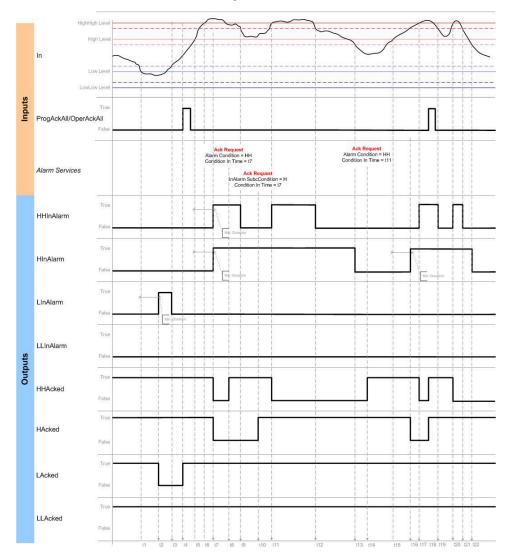

See Math status flags on page 849.

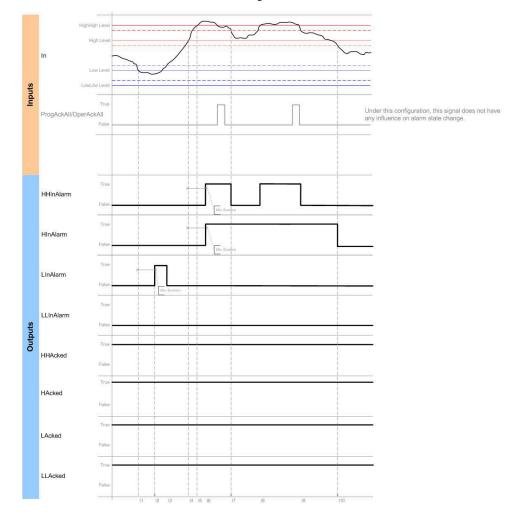
Major/Minor Faults


None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

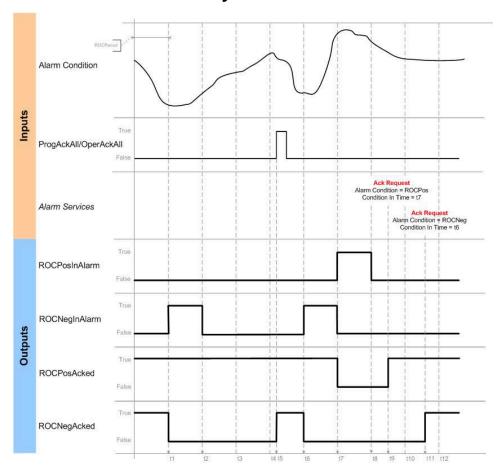
Analog Alarm State Diagrams

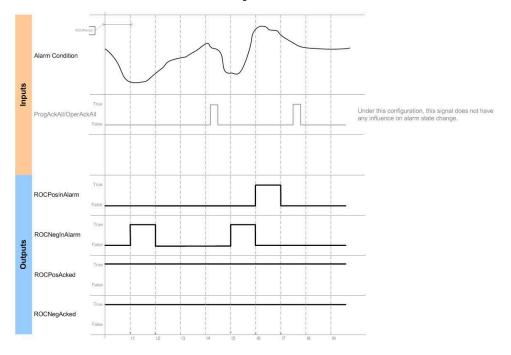
These illustrations show the manner in which an analog alarm responds to changing alarm conditions and operator commands.


² HH alarm condition can be acked by several different ways: HHProgAck, HHOperAck, ProgAckAll, OperAckAll, clients (RSLogix 5000, RSview)


Analog Alarm Timing Diagrams

These timing diagrams show the sequence of analog alarm operations.


Level Conditions Behavior Acknowledge


Level Conditions Behavior No Acknowledge

ROC Conditions Behavior Acknowledge

ROC Conditions Behavior No Acknowledge

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	Rung-condition-out is cleared to false.
	All of the ALMA structure parameters are cleared
	All alarm conditions are acknowledged.
	All operator requests are cleared
	All timestamps are cleared
	All delivery flags are cleared.
Rung-condition-in is false	Rung-condition-out is cleared to false.
Rung-condition-in is true	Rung-condition-out is set to true
	The instruction executes
Postscan	Rung-condition-out is cleared to false

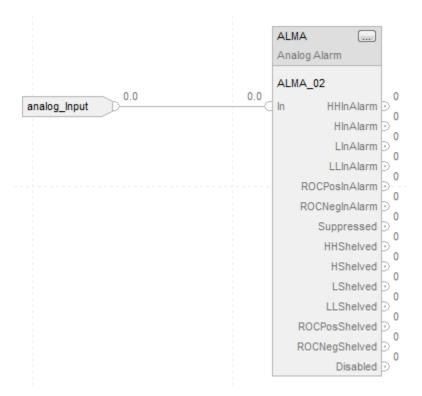
Function Block

Condition/State	Action Taken
Prescan	Tag.EnableOut is cleared to false.
	All of the ALMA structure parameters are cleared
	All alarm conditions are acknowledged.
	All operator requests are cleared
	All timestamps are cleared
	All delivery flags are cleared.
Tag.EnableIn is false	Tag.EnableOut is cleared to false
Tag.EnableIn is true	The instruction executes
	Tag.EnableOut is set to true
Instruction first run	N/A
Instruction first scan	N/A
Postscan	Tag.EnableOut is cleared to false

Structured Text

In Structured Text, EnableIn is always true during normal scan. Therefore, if the instruction is in the control path activated by the logic it will execute.

Condition/State	Action Taken
Prescan	See Prescan in the Ladder Diagram table.
Normal Execution	See Rung-condition-in is true in the Ladder Diagram table.
Postscan	See Postscan in the Ladder Diagram table.


Examples

Ladder Diagram

	ALMA		
_	Analog Alarr	n	
	ALMA	myAnalogAlarm	-(HHInAlarm)
	In	analog_Input	-(HInAlarm)
		0.0 🖛	-(LInAlarm)
	ProgAckAll	analog_ack	-(LLInAlarm)
		0 🖛	-(ROCPosInAlarm)-
	ProgDisable	analog_Disable	-(ROCNegInAlarm)-
		0 🖛	-(HHShelved)
	ProgEnable	analog_Enable	-(HShelved)
		0 🖛	-(LShelved)
	HHLimit	0.0 🖛	-(LLShelved)
	HLimit	0.0 🖛	-(ROCPosShelved)-
	LLimit	0.0 🖛	-(ROCNegShelved)-
	LLLimit	0.0 🖛	-(Suppressed)-
			-(Disabled)
			-(InstructFault)

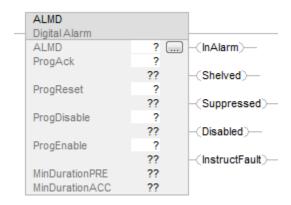
Function Block

An example of an ALMA instruction in Function Block is shown below. In this example, the Tank 32 Level Transmitter (Tank32LT) is monitored for alarm conditions. The Tank32LevelAck tag can be used to acknowledge all conditions of this alarm.

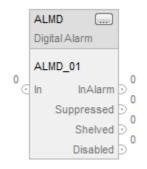
Structured Text

In this example, the Tank 32 Level Transmitter (Tank32LT) is monitored for alarm conditions. The Tank32LevelAck tag can be used to acknowledge all conditions of this alarm.

ALMA(Tank32Level,Tank32LT,Tank32LevelAck,0, 0);


Digital Alarm (ALMD)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.


The Digital Alarm (ALMD) instruction provides alarming for any discrete Boolean value.

Available Languages

Ladder Diagram

Function Block

Structured Text

ALMD (ALMD, In, ProgAck, ProgReset, ProgDisable, ProgEnable)

Operands

Ladder Diagram

Operand	Туре	Format	Description
ALMD tag	ALARM_DIGITAL	Structure	ALMD structure
ProgAck	BOOL	Tag	On transition from false to
		lasara di sta	true, acknowledges alarm (if
		Immediate	acknowledgment is required).

Operand	Туре	Format	Description
ProgReset	BOOL	Tag	On transition from false to
		Immediate	true, resets alarm (if resetting
			is required).
ProgDisable	BOOL	Tag	When True, disables alarm
		Immediate	(does not override Enable
			Commands).
ProgEnable	BOOL	Tag	When True, enables alarm
		Immediate	(takes precedence over
		IIIIIeulate	Disable commands).
MinDurationPRE	DINT	Immediate	Specifies how long the alarm
			condition must be met before
			it is reported (milliseconds).
MinDurationACC	DINT	Immediate	Indicates the current
			accumulator value for the
			alarm's MinDuration timer.
			This value is not used in
			versions 29 and later of the
			Logix Designer application.
			The value is always 0.

Function Block

Operand	Туре	Format	Description
ALMD tag	ALARM_DIGITAL	structure	ALMD structure

Structured Text

Operand	Туре	Format	Description
ALMD tag	ALARM_DIGITAL	Structure	ALMD structure
ProgAck	BOOL	Tag	On transition from false to true, acknowledges alarm (if
		Immediate	acknowledgment is required).
ProgReset	BOOL	Tag	On transition from false to
		Immediate	true, resets alarm (if resetting is required).
ProgDisable	BOOL	Tag	When True, disables alarm
		Immediate	(does not override Enable Commands).
ProgEnable	BOOL	Tag	When True, enables alarm
		Immediate	(takes precedence over Disable commands).

Operand	Туре	Format	Description
MinDurationPRE	DINT	Immediate	Specifies how long the alarm
			condition must be met before
			it is reported (milliseconds).
MinDurationACC	DINT	Immediate	Indicates the current
			accumulator value for the
			alarm's MinDuration timer. This
			value is not used in versions
			29 and later of the Logix
			Designer application. The
			value is always 0.

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

ALMD Structure

Input Parameters

Input Parameter	Data Type	Description
EnableIn	BOOL	Ladder Diagram:
		Corresponds to the rung state. Does not
		affect processing.
		Function Block:
		If cleared to false, the instruction does
		not execute and outputs are not updated
		If set, the instruction executes.
		Default is true.
		Structured Text:
		No effect. The instruction always
		executes.
In	BOOL	The digital signal input to the instruction
		Default is false.
		Ladder Diagram:
		Follows the rung condition. Set to true if
		the rung condition is true. Cleared to fal
		if the rung condition is false.
		Structured Text:
		Copied from instruction operand.
InFault	BOOL	Bad health indicator for the input. The
		user application may set InFault to
		indicate the input signal has an error.
		When set, the instruction sets InFaulted
		(Status.1). When cleared to false, the
		instruction clears the InFaulted (Status.1
		to false. In either case, the instruction

Input Parameter	Data Type	Description
		continues to evaluate In for alarm
		conditions.
		Default is false (good health).
Condition	BOOL	Specifies how alarm is activated. When
		Condition is set to true, the alarm
		condition is activated when In is set to
		true. When Condition is cleared to false,
		the alarm condition is activated when In
		is Cleared to false.
		Default is true.
AckRequired	BOOL	Specifies whether alarm acknowledgmer
		is required. When set to true,
		acknowledgment is required. When
		cleared to false, acknowledgment is not
		required and Acked is always set to true.
		Default is true.
Latched	BOOL	Specifies whether the alarm is latched.
Lattieu	DUUL	Latched alarms remain InAlarm when the
		alarm condition becomes false, until a
		Reset command is received. When set to
		true, the alarm is latched. When cleared
		to false, the alarm is unlatched. Default is false.
		A latched alarm can only be reset when the alarm condition is false.
ProgAck	BOOL	Set to true by the user program to
		acknowledge the alarm. Takes effect onl
		if the alarm is unacknowledged. Requires
		a false-to-true transition.
		Default is false.
		Ladder Diagram:
		Copied from the instruction operand.
		Structured Text:
		Copied from the instruction operand.
OperAck	BOOL	Set to true by the operator interface to
		acknowledge the alarm. Takes effect
		only if the alarm is unacknowledged. The
		instruction clears this parameter.
		Default is false.
ProgReset	BOOL	Set to true by the user program to reset
		the latched alarm. Takes effect only if
		the latched alarm is InAlarm and the

Input Parameter	Data Type	Description
		alarm condition is false. Requires a
		false-to-true transition.
		Default is false.
		Ladder Diagram:
		Copied from the instruction operand.
		Structured Text:
		Copied from the instruction operand.
OperReset	BOOL	Set to true by the operator interface to
		reset the latched alarm. Takes effect
		only if the latched alarm is InAlarm and
		the alarm condition is false. The alarm
		instruction clears this parameter to false
		Default is false.
ProgSuppress	BOOL	Set to true by the user program to
		suppress the alarm.
		Default is false.
OperSuppress	BOOL	Set to true by the operator interface to
		suppress the alarm. The alarm instruction
		clears this parameter to false.
		Default is false.
ProgUnsuppress	BOOL	Set to true by the user program to
		unsuppress the alarm. Takes precedenc
		over Suppress commands.
		Default is false.
OperUnsuppress	BOOL	Set to true by the operator interface to
		unsuppress the alarm. Takes precedenc
		over Suppress commands. The alarm
		instruction clears this parameter to fals
		Default is false.
OperShelve	BOOL	Set to true by the operator interface to
		shelve or reshelve the alarm. Requires a
		transition from false in one program sca
		to true in the next program scan. The
		alarm instruction clears this parameter
		false.
		Default is false.
		Unshelve commands take precedence
		over Shelve commands.
		Shelving an alarm postpones alarm
		processing. It is like suppressing an
		alarm, except that shelving is time
		limited. If an alarm is acknowledged whi
		it is shelved, it remains acknowledged

Input Parameter	Data Type	Description
		even if it becomes active again. It becomes unacknowledged when the shelve duration ends provided the alarm is still active at that moment.
ProgUnshelve	BOOL	Set to true by the user program to unshelve the alarm. Takes precedence over Shelve commands. Default is false. For more information on shelving an alarm, see the description for the OperShelve parameter.
OperUnshelve	BOOL	Set to true by the operator interface to unshelve the alarm. The alarm instruction clears this parameter to false. Takes precedence over Shelve commands. Default is cleared. For more information on shelving an alarm, see the description for the OperShelve parameter.
ProgDisable	BOOL	Set to true by the user program to disable the alarm. Default is false. Ladder Diagram: Copied from the instruction operand. Structured Text: Copied from the instruction operand.
OperDisable	BOOL	Set to true by the operator interface to disable the alarm. The alarm instruction clears this parameter to true. Default is false.
ProgEnable	BOOL	Set to true by the user program to enable the alarm. Takes precedence over a Disable command. Default is false. Ladder Diagram: Copied from the instruction operand. Structured Text: Copied from the instruction operand.
OperEnable	BOOL	Set to true by the operator interface to enable the alarm. Takes precedence over Disable command. The alarm instruction clears this parameter to false. Default is false.

Input Parameter	Data Type	Description
AlarmCountReset	BOOL	Set to true by the operator interface to
		reset the alarm count to zero. The alarm
		instruction clears this parameter to false
		Default is false.
UseProgTime	BOOL	Specifies whether to use the controller's
		clock or the ProgTime value to timestam
		alarm state change events. When set
		to true, the ProgTime value provides
		timestamp. When cleared to false, the
		controller's clock provides timestamp.
		Default is false.
ProgTime	LINT	If UseProgTime is set to true, this value is
		used to provide the timestamp value for
		all events. This lets the application apply
		timestamps obtained from the alarm
		source, such as a sequence-of-events
		input module.
Severity	DINT	Severity of the alarm. This does not affe
		processing of alarms by the controller,
		but can be used for sorting and filtering
		functions at the alarm subscriber.
		Valid = 11000 (1000 = most severe; 1 =
		least severe).
		Default = 500.
MinDurationPRE	DINT	Minimum duration preset (milliseconds)
		for the alarm condition to remain true
		before the alarm is marked as InAlarm
		and alarm notification is sent to clients.
		The controller collects alarm data as soo
		as the alarm condition is detected; so
		no data is lost while waiting to meet the
		minimum duration.
		Valid = 02147483647.
		Default = 0.
ShelveDuration	DINT	Length of time in minutes to shelve an
		alarm. Shelving an alarm postpones
		alarm processing. It is like suppressing
		an alarm, except that shelving is time
		limited. If an alarm is acknowledged whil
		it is shelved, it remains acknowledged
		even if it becomes active again. It
		becomes unacknowledged when the

Input Parameter	Data Type	Description
		shelve duration ends (provided the alarm
		is still active at that time).
		Minimum time is one minute. Maximum
		time is defined by MaxShelveDuration.
MaxShelveDuration	DINT	Maximum time duration in minutes for
		which an alarm can be shelved. For more
		information on shelving an alarm, see
		the description for the ShelveDuration
		parameter.

Output Parameters

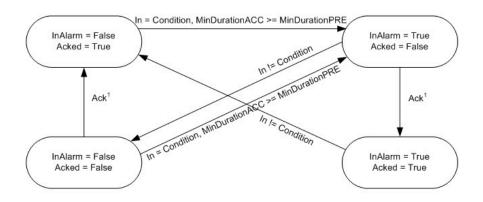
Output Parameter	Data	Description
output raiameter	Туре	Description
EnableOut	BOOL	Enable output.
InAlarm	BOOL	Alarm active status. Set to true when the alarm is active. Cleared to false when the alarm is not active (normal status).
Acked	BOOL	Alarm acknowledged status. Set to true when the alarm is acknowledged. Cleared to false when the alarm is not acknowledged. Acked is always set to true when AckRequired is cleared to false.
InAlarmUnack	BOOL	Combined alarm active and acknowledged status. Set to true when the alarm is active (InAlarm is true) and unacknowledged (Acked is false). Cleared to false when the alarm is inactive, acknowledged, or both.
Suppressed	BOOL	Suppressed status of the alarm. Set to true when the alarm is suppressed. Cleared to falsewhen the alarm is not suppressed.
Shelved	BOOL	Shelved status of the alarm. Set to true when alarm is shelved. Cleared to false when alarm is unshelved. Shelving an alarm postpones alarm processing. It is like suppressing an alarm, except that shelving is time limited. If an alarm is acknowledged while it is shelved, it remains acknowledged even if it becomes active again. It

Output Parameter	Data	Description
output Parameter	Туре	Description
		becomes unacknowledged when the
		shelve duration ends.
Disabled	BOOL	Disabled status of the alarm. Set to true
		when the alarm is not enabled. Cleared t
		false when the alarm is enabled.
Commissioned	BOOL	Commissioned status of the alarm. Set
		to true when the alarm is commissioned
		Cleared to false when the alarm is
		decommissioned. Currently always set to
		true.
MinDurationACC	DINT	Indicates the current accumulator value
		for the alarm's MinDuration timer. This
		value is not used in versions 29 and late
		of the Logix Designer application. The
		value is always 0.
AlarmCount	DINT	Number of times the alarm has been
		activated (InAlarm is set). If the maximu
		value is reached, the counter leaves the
		value at the maximum count value.
InAlarmTime	LINT	Timestamp of alarm detection.
AckTime	LINT	Timestamp of alarm acknowledgment.
		If the alarm does not require
		acknowledgment, this timestamp is equa
		to alarm time.
RetToNormalTime	LINT	Timestamp of alarm returning to a norm
		state.
AlarmCountResetTime	LINT	Timestamp indicating when the alarm
		count was reset.
ShelveTime	LINT	Timestamp indicating when the alarm
		was shelved the last time. This value is
		set by controller when alarm is shelved.
		Alarm can be shelved and unshelved
		many times. Each time the alarm is
		shelved, the timestamp is set to the
		current time.
		For more information on shelving an
		alarm, see the description for the Shelve
		parameter.
UnshelveTime	LIN	Timestamp indicating when the alarm is
		going to be unshelved. This value is set
		every time the alarm is shelved (even if

Output Parameter	Data Type	Description
		the alarm has already been shelved). The timestamp is determined by adding the ShelveDuration to the current time. If the alarm is unshelved programmatically or
		by an operator, then the value is set to the current time. For more information on shelving an alarm see the description for the Shelved parameter.
Status	DINT	Combined status indicators: Status.0 = InstructFault Status.1= InFaulted Status.2 = SeverityInv
InstructFault (Status.0)	BOOL	Instruction error conditions exist. This is not a minor or major controller error. Check the remaining status bits to determine what occurred.
InFaulted (Status.1)	BOOL	User program has set InFault to indicate bad quality input data. Alarm continues to evaluate In for alarm condition.
SeverityInv (Status.2)	BOOL	Alarm severity configuration. If severity <1, the instruction uses Severity = 1. If severity >1000, the instruction uses Severity = 1000.

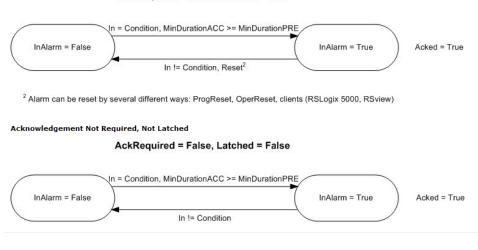
Digital Alarms State Diagrams

Acknowledgement Required, Latched

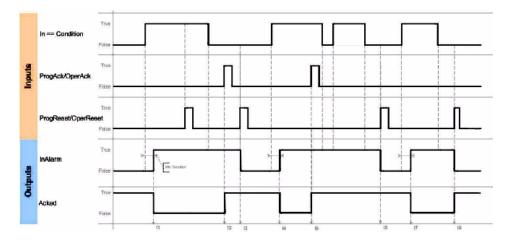

AckRequired = True, Latched = True

¹ Alarm can be acked by several different ways: ProgAck, OperAck, clients (RSLogix 5000, RSview)
² Alarm can be reset by several different ways: ProgReset, OperReset, clients (RSLogix 5000, RSview)

Acknowledgement Required, Not Latched

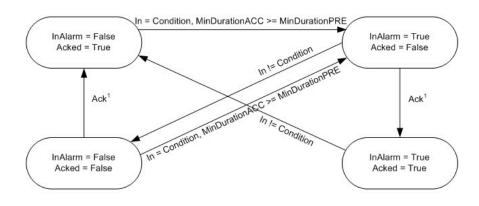

AckRequired = True, Latched = False

¹ Alarm can be acked by several different ways: ProgAck, OperAck, clients (RSLogix 5000, RSview)


Acknowledgement Not Required, Latched

AckRequired = False, Latched = True

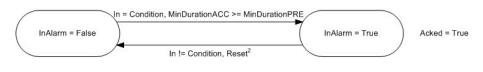
Digital Alarm Timing Diagrams


ALMD Alarm Acknowledge Required and Latched

ALMD Alarm Acknowledge Required and Not Latched

Acknowledgement Required, Not Latched

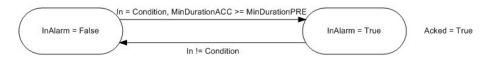
AckRequired = True, Latched = False



¹ Alarm can be acked by several different ways: ProgAck, OperAck, clients (RSLogix 5000, RSview)

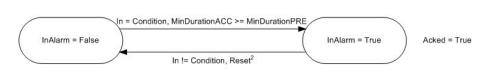
ALMD Alarm Acknowledge Not Required and Latched

Acknowledgement Not Required, Latched


AckRequired = False, Latched = True

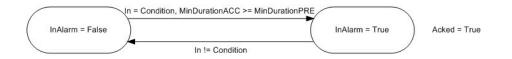
² Alarm can be reset by several different ways: ProgReset, OperReset, clients (RSLogix 5000, RSview)

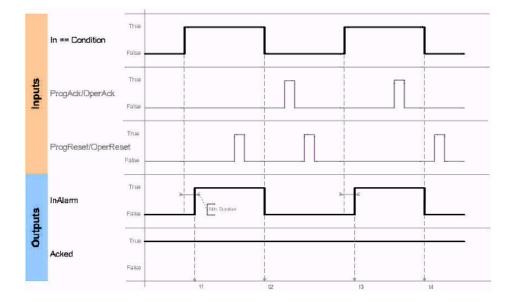
Acknowledgement Not Required, Not Latched


AckRequired = False, Latched = False

ALMD Alarm Acknowledge Not Required and Not Latched

Acknowledgement Not Required, Latched


AckRequired = False, Latched = True



² Alarm can be reset by several different ways: ProgReset, OperReset, clients (RSLogix 5000, RSview)

Acknowledgement Not Required, Not Latched

AckRequired = False, Latched = False

Connect a button to the OperShelve tag

To prevent unwanted reshelving of the alarm, the alarm instruction only processes the OperShelve tag if it transitions from false to true between one program scan and the next. If an operator presses a push button to shelve the alarm while the ProgUnshelve tag is true, the alarm is not shelved because the ProgUnshelve tag takes precedence. However, because program scans complete in milliseconds, the operator may still be holding down the push button so that the OperShelve tag remains true over several program scans even though the ProgUnshelve tag has been cleared to false. This means that the alarm is not shelved.

To shelve the alarm, the operator can release and press the button again

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

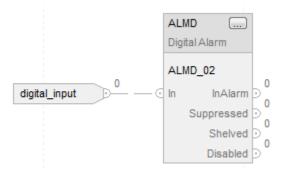
Ladder Diagram

Condition/State	Action Taken
Prescan	EnableOut is cleared to false to false
	The InAlarm output is cleared to false
	The Shelved output is cleared to false
	The Acked ouput is set to true.
	All alarm conditions are acknowledged.
	All operator requests are cleared
	All timestamps are cleared
Rung-condition-in is false	Rung is cleared to false.
	The In parameter is cleared to false
	The instruction executes.
Rung-condition-in is true	Rung is set to true.
	The In parameter is set to true
	The instruction executes.
Postscan	Rung bit is cleared to false.

Function Block

Condition/State	Action Taken	
Prescan	Tag.EnableOut is cleared to false.	
	The InAlarm output is cleared to false	
	The Shelved output is cleared to false	
	The Acked ouput is set to true	
	All operator requests are cleared	
	All timestamps are cleared	
Tag.EnableIn is false	Tag.EnableOut is cleared to false	
Tag.EnableIn is true	The instruction executes	
	Tag.EnableOut is set to true	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	Tag.EnableOut is cleared to false.	

Structured Text


Condition/State	Action Taken	
Prescan	See Prescan in the Ladder Diagram table.	
Normal Execution See Rung-condition-in is true in the Ladder Diag		
Postscan	See Postscan in the Ladder Diagram table.	

Example

Ladder Diagram

ALMD		
Digital Alarm		
ALMD	myDigitalAlarm 📖	-(InAlarm)
ProgAck	digital_Ack	
	0 🔶	-(Shelved)
ProgReset	digital_Reset	
	0 🖛	-(Suppressed)-
ProgDisable	digital_Disable	
	0 🖛	-(Disabled)
ProgEnable	digital_Enable	
	0 🖛	-(InstructFault)-
MinDurationP	RE 0 🕈	
MinDuration A	ACC 0 🖛	

Function Block

Structured Text

An example of an ALMD instruction in Structured Text is shown below. In this example, two motor failure signals are combined such that if either one occurs, a motor fault alarm is activated. The Motor101Ack tag can be used to acknowledge the alarm.

Motor101FaultConditions := Motor1010vertemp OR Motor101FailToStart;

ALMD(Motor101Fault,Motor101FaultConditions,Motor101Ack,0,0,0);

Bit Instructions

Use the bit (relay-type) instructions to monitor and control the status of bits, such as input bits or timer-control word bits.

Available Instructions

Ladder Diagram

If you want to:	Use this instruction:
Enable outputs when a bit is set	XIC on page 80
Enable outputs when a bit is cleared	XIO on page 84
set a bit	OTE on page 76
set a bit (retentive)	OTL on page 77
clear bit (retentive)	Output Latch (OTL) on page 77
Enable outputs for one scan each time a rung goes true	ONS on page 65
set a bit for one scan each time a rung goes true	OSR on page 72
set a bit for one scan each time the rung goes false	OSF on page 67
set a bit for one scan each time the input is set in function	One Shot Rising with Input (OSRI) on page 74
block	
set a bit for one scan each time the input is cleared in funciton	One Shot Falling with Input (OSFI) on page 69
block	

One Shot (ONS)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The One Shot (ONS) instruction makes the remainder of the rung true each time rung-condition-in transitions from false to true.

Available Languages

Ladder Diagram

-[ONS]-

Operands

IMPORTANT: Unexpected operation may occur if:

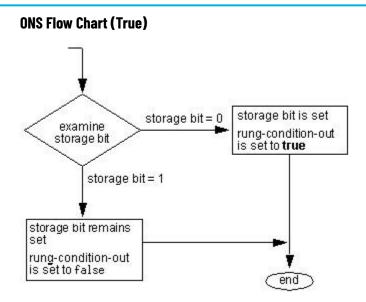
- Output tag operands are overwritten
- Members of a structure operand are overwritten
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

Operand	Data Type	Format	Description
Storage bit	BOOL	tag	Internal storage bit.
			Retains the rung-condition-in
			from the last time the
			instruction was executed.
			There are various operand
			addressing modes possible
			for the storage bit, see Bit
			Addressing on page 864 for
			examples.

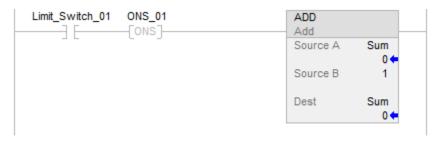
Affects Math Status Flags

No


Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution


Ladder Diagram

Condition/State	Action Taken	
Prescan	The storage bit is set to true to prevent an invalid trigger dur the first scan.	
Rung-condition-in is false	The storage bit is cleared to false, rung-condition-out is cleared to false.	
Rung-condition-in is true	See ONS Flow Chart (True).	
Postscan	N/A	

Example

Ladder Diagram

In this example, the sum increments each time limit_switch_1 goes from false to true.

One Shot Falling (OSF)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The One Shot Falling (OSF) instruction sets the output bit for one scan when rung-condition-in transitions from true to false.

Available Languages

Ladder Diagram

OSF		1
 One Shot Falling		
Storage Bit	?	-(SB)
Output Bit	?	-(OB)

Operands

IMPORTANT: Unexpected operation may occur if:

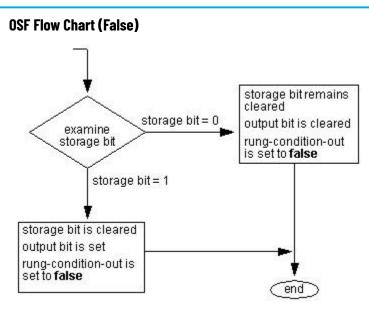
- Output tag operands are overwritten
- Members of a structure operand are overwritten
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

Operand	Data Type	Format	Description
Storage Bit	BOOL	tag	Stores the rung-condition-in
			from when the instruction was
			last executed.
			There are various operand
			addressing modes possible
			for the storage bit, see Bit
			Addressing on page 864 for
			examples.
Output Bit	BOOL	tag	Bit to be modified.

Affects Math Status Flags

No


Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	The storage bit is cleared to false to prevent an invalid trigger	
	during the first program scan.	
	The output bit is cleared to false.	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.	
	See OSF Flow Chart (False).	
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.	
	The storage bit is set to true.	
	The output bit is cleared to false.	
Postscan	N/A	

Example

Ladder Diagram

Limit_Switch_01	OSF One Shot Falling Storage Bit Storage_bit_02 -(SB)- Output Bit Output_bit_02 -(OB)-
Output_bit_02	ADD Add
	Source A Sum
	Source B 5
	Dest Sum 0 🖛

This example shows how an OSF can be used to make one or more instructions edge-triggered. Each time Limit_Switch_01 transitions from true to false the OSF will set Output_bit_02 to true. Any instruction conditioned by Output_bit_02 will be enabled and, since Output_bit_02 is only true for one scan, will execute once per transition.

One Shot Falling with Input (OSFI)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The One Shot Falling with Input (OSFI) instruction sets the OutputBit for one execution cycle when the InputBit toggles from false to true.

Available Languages

Ladder Diagram

This instruction is not available in ladder diagram.

Function Block

Structured Text

OSFI(OSFI_tag)

Operands

Structured Text

Operand	Туре	Format	Description
OSFI tag	FBD_ONESHOT	Structure	OSFI structure

See Structured Text Syntax on page 879 for operand-related faults

Function Block

Operand	Туре	Format	Description
OSFI tag	FBD_ONESHOT	Structure	OSFI structure

FBD_ONESHOT Structure

Input Parameter	Data Type	Description	
EnableIn	BOOL	Enable input. If cleared, the instruction	
		does not execute and outputs are not	
		updated.	
		Default is set.	
InputBit	BOOL	Input bit.	

Output Parameter	Data Type Description	
EnableOut	BOOL	Indicates if instruction is enabled.
OutputBit	BOOL	Output bit

Description

If InputBit is false, and it was true the last time the instruction was scanned then OutputBit will be set, otherwise OutputBit will be cleared.

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See *Common Attributes for General Instructions* on page 849 Common Attributes for General Instructions on page 849 for operand-related faults.

Execution

Function Block

Condition / State	Action Taken	
Prescan	EnableIn and EnableOut bits are cleared to false.	
Tag.EnableIn is false	EnableIn and EnableOut bits are cleared to false.	
Tag.EnableIn is true	EnableIn and EnableOut bits are set to true.	
	The instruction executes	
Instruction first run	N/A	
Instruction first scan	Previous InputBit history is cleared to require a True to False	
	transition of InputBit.	
Postscan	EnableIn and EnableOut bits are cleared to false.	

Structured Text

Condition / State	Action Taken	
Prescan	See Prescan in the Function Block table.	
Normal execution	See Tag.EnableIn is true in the Function Block table.	
Postscan	See Postscan in the Function Block table.	

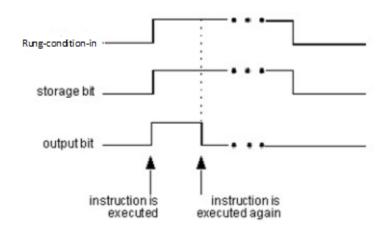
Example

When limit_switch1 goes from set to cleared, the OSFI instruction sets OutputBit for one scan.

Function Block

Structured Text

OSFI_01.InputBit := limit_switch1;


OSFI(OSFI_01);

Output_state := OSFI_01.OutputBit;

One Shot Rising (OSR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The One Shot Rising (OSR) instruction sets the output bit for one scan when rung-condition-in transitions from false to true.

Available Languages

Ladder Diagram

OSR		
 One Shot Rising		
Storage Bit	?	-(SB)
Output Bit	?	-(OB)

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten
- Members of a structure operand are overwritten
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

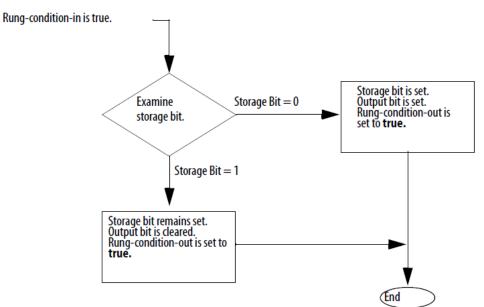
Operand	Data Type	Format	Description
Storage Bit	BOOL	tag	Stores the rung-condition-in
			from when the instruction was
			last executed.
			There are various operand
			addressing modes possible
			for the storage bit, see Bit

Operand	Data Type	Format	Description
			Addressing on page 864 for
			examples.
Output Bit	BOOL	tag	Bit to be modified.

Affects Math Status Flags

No

Major/Minor Faults


None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	The storage bit is set to true to prevent an invalid trigger during	
	the first program scan.	
	The output bit is cleared to false.	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in	
	The storage bit is cleared to false.	
	The output bit is cleared to false.	
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in	
	See OSR Flow Chart (True).	
Postscan	N/A	

OSR Flow Chart (True)

Example

Ladder Diagram

Limit_Switch_01	OSR One Shot Rising
J L	Storage Bit Storage_bit_02 -(SB) Output Bit Output_bit_02 -(OB)
Output_bit_02	ADD
	Source A Sum
	0 🗲
	Source B 5

This example shows how an OSR can be used to make one or more instructions edge-triggered. Each time Limit_Switch_01 transitions from false to true the OSR will set Output_bit_02 to true. Any instruction conditioned by Output_bit_02 will be enabled and, since Output_bit_02 is only true for one scan, will execute once per transition.

One Shot Rising with Input (OSRI)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The One Shot Rising with Input (OSRI) instruction sets the output bit for one execution cycle when the input bit toggles from cleared to set.

Available Languages

Ladder Diagram

This instruction is not available in ladder diagram.

Function Block

OSR		
 One Shot Rising		
Storage Bit	?	-(SB)
Output Bit	?	-(OB)

Structured Text

OSRI(OSRI_tag);

Operands

Structured Text

Operand	Туре	Format	Description
OSRI tag	FBD_ONESHOT	Structure	OSRI structure

Function Block

Operand	Туре	Format	Description
OSRI tag	FBD_ONESHOT	Structure	OSRI structure

FBD_ONESHOT Structure

Input Parameter	Data Type	Description
EnableIn	BOOL	If cleared, the instruction does not execute and outputs are not updated. If set, the instruction executes.
		Default is set.
InputBit	BOOL	Input bit.
		Default is cleared.

Output Parameter	Data Type	Description
EnableOut	BOOL	Indicates if instruction is enabled.
OutputBit	BOOL	Output bit

Description

If InputBit is true, and it was false the last time the instruction was scanned then OutputBit will be set, otherwise OutputBit will be cleared.

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Common Attributes for General Instructions on page 849 for operand-related faults.

Execution

Function Block

Condition/State	Action Taken
Prescan	EnableIn and EnableOut bits are cleared to false.
Tag.Enable-in is false	EnableIn and EnableOut bits are cleared to false.
Tag.Enable-in is true	EnableIn and EnableOut bits are set to true. The instruction executes.
Instruction first run	N/A
Instruction first scan	Previous InputBit history is set to require a False to True transition of InputBit.
Postscan	EnableIn and EnableOut bits are cleared to false.

Structured Text

Condition/State Action Taken	
Prescan	See Prescan in the Function Block table.
Normal execution	See Tag.EnableIn is true in the Function Block table.
Postscan	See Postscan in the Function Block table

Examples

Function Block

When limit_switch1 goes from cleared to set, the OSRI instruction sets OutputBit for one scan.

Structured Text

OSRI_01.InputBit := limit_switch1;

OSRI(OSRI_01);

State := OSRI_01.OutputBit;

Output Energize (OTE)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The Output Energize (OTE) instruction sets or clears the data bit based on rung condition.

Available Languages

Ladder Diagram

data_bit —<>—

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten
- Members of a structure operand are overwritten
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

Operand	Data Type	Format	Description
Data bit	BOOL	tag	Bit to be modified. There are
			various operand addressing
			modes possible for the data
			bit, see Bit Addressing on page
			864 for examples.

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	The data bit is cleared to false
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in. The data bit is cleared to false
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
Destease	The data bit is set to true.
Postscan	The data bit is cleared to false.

Example

Ladder Diagram

When switch is true, the OTE instruction sets Light_O1 to true. When switch is false, the OTE instruction clears Light_O1 to false.

Output Latch (OTL)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The Output Latch (OTL) instruction sets (latches) the data bit.

When the rung condition is true, the OTL instruction sets the data bit to true. The data bit remains true until it is cleared, typically by an OTU instruction. When the rung condition is changed to false, the OTL instruction does not change the status of the data bit.

Available Languages

Ladder Diagram

data_bit

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten
- Members of a structure operand are overwritten
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

Operand	Data Type	Format	Description
Data bit	BOOL	tag	Bit to be modified. There are
			various operand addressing
			modes possible for the data
			bit, see Bit Addressing on page
			864 for examples.

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

If the operand is an indirect array reference and the subscript is out of range, then the controller does not generate a major fault when the OTL instruction is false.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.	
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.	
	The data bit is set to true.	
Postscan	N/A	

Example

Ladder Diagram

Light_02 ____(L)____

When enabled, the OTL instruction turns the light on.

Output Unlatch (OTU)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The Output Unlatch (OTU) instruction clears (unlatches) the data bit.

Available Languages

Ladder Diagram

data_bit —(U)—

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten
- Members of a structure operand are overwritten
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

Operand	Data Type	Format	Description	
Data bit	BOOL	tag	Bit to be modified. There are	
			various operand addressing	
			modes possible for the data	
			bit, see Bit Addressing on page	
			864 for examples.	

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

If the operand is an indirect array reference and the subscript is out of range, then the controller does not generate a major fault when the OTL instruction is false.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	The data bit is set to true.
Postscan	N/A

Example

Ladder Diagram

When enabled, the OTL instruction clears Light_02.

Examine if Closed (XIC)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The Examine if Closed (XIC) instruction examines the data bit to set or clear the rung condition.

Available Languages

Ladder Diagram

data_bit

Operands

Ladder Diagram

Operand	Data Type	Format	Description	
Data bit	BOOL	tag	Bit to be tested. There are	
			various operand addressing	
			modes possible for the data	
			bit, see Bit Addressing on page	
			864 for examples.	

Affects Math Status Flags

No

Major/Minor Faults

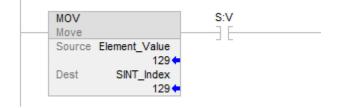
None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in	
Rung-condition-in is true	If DataBit is true, rung-condition-out is set to true.	
	If DataBit is false, rung-condition-out is cleared to false.	
Postscan	N/A	

Example 1


Ladder Diagram

Limit_Switch_01

If Limit_Switch_1 is true, the next instruction is enabled.

Example 2

Ladder Diagram

If S:V is true (generated by MOV), the next instruction is enabled.

Example 3

Ladder Diagram

Test_Axis_00.BusUndervoltageULFault <Axis_04.BusUndervoltageULFault>

XIC Access LINT Number

Axis_04 is an AXIS_CIP_DRIVE tag.

Test_Axis_00 is an Alias for Axis_04.

The AXIS_CIP_DRIVE type has a LINT member called CIPAxisFaults.

BusUndervoltageULFault is a bit member of CIPAxisFaults.

Test_Axis_00.BusUndervoltageULFault is bit 34 of CIPAxisFaults. The bit 34 value is 0x400000000.

If Test_Axis_00.BusUndervoltageULFault is true, this enables the next instruction.

Examine if Closed (XIC)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The Examine if Closed (XIC) instruction examines the data bit to set or clear the rung condition.

Available Languages

Ladder Diagram

data_bit

Operands

Ladder Diagram

Operand	Data Type	Format	Description	
Data bit	BOOL	tag	Bit to be tested. There are	
			various operand addressing	
			modes possible for the data	
			bit, see Bit Addressing on page	
			864 for examples.	

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

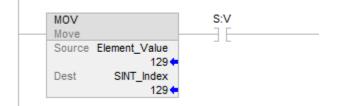
Execution

Ladder Diagram

-	Condition/State	Action Taken
-	Prescan	N/A

Condition/State	Action Taken	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in	
Rung-condition-in is true	If DataBit is true, rung-condition-out is set to true.	
	If DataBit is false, rung-condition-out is cleared to false.	
Postscan	N/A	

Example 1


Ladder Diagram

Limit_Switch_01

If Limit_Switch_1 is true, the next instruction is enabled.

Example 2

Ladder Diagram

If S:V is true (generated by MOV), the next instruction is enabled.

Example 3

Ladder Diagram

Test_Axis_00.BusUndervoltageULFault <Axis_04.BusUndervoltageULFault>

XIC Access LINT Number

Axis_04 is an AXIS_CIP_DRIVE tag.

Test_Axis_00 is an Alias for Axis_04.

The AXIS_CIP_DRIVE type has a LINT member called CIPAxisFaults.

BusUndervoltageULFault is a bit member of CIPAxisFaults.

Test_Axis_00.BusUndervoltageULFault is bit 34 of CIPAxisFaults. The bit 34 value is 0x400000000.

If Test_Axis_00.BusUndervoltageULFault is true, this enables the next instruction.

Examine If Open (XIO)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The Examine If Open (XIO) instruction examines the data bit to set or clear the rung condition.

Available Languages

Ladder Diagram

data_bit

Operands

Ladder Diagram

Operand	Data Type	Format	Description	
Data bit	BOOL	tag	Bit to be tested. There are	
			various operand addressing	
			modes possible for the data	
			bit, see Bit Addressing on page	
			864for examples.	

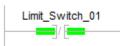
Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

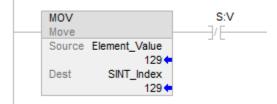
Execution


Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in	
Rung-condition-in is true	If Data Bit is true, rung-condition-out is cleared to false.	
	If Data Bit is false, rung-condition-out is set to true.	
Postscan	N/A	

Examples

Example 1


Ladder Diagram

If Limit_Switch_01 is false, the next instruction is enabled.

Example 2

Ladder Diagram

If S:V is false, this enables the next instruction.

Timer and Counter Instructions

Timers and counters control operations based on time or the number of events.

Available Instructions

Ladder Diagram

TON on page 119 TO	TOF on page 111	RTO on page 103	CTU on page 92	CTD on page 87	RES on page 101
--------------------	-----------------	-----------------	----------------	----------------	-----------------

Function Block and Structured Text

TONR on page 123	TOFR on page 115	RTOR on page 106	CTUD on page 97
		-	
If you want to		Use this instruction	
time how long a timer is enabled		TON	
time how long a timer is disable	d	TOF	
accumulate time		RTO	
time how long a timer is enabled	time how long a timer is enabled with built-in reset in function		
block	block		
time how long a timer is disable	time how long a timer is disabled with built-in reset in function		
block			
accumulate time with built-in re	set in function block	RTOR	
count up		СТИ	
count down		СТД	
count up and count down in function block		СТИД	
reset a timer or counter		RES	

The time base is 1 msec for all timers. For example, a 2 second timer's .PRE value should be 2000.

Count Down (CTD)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The CTD instruction counts downward each time the rung-condition-in transitions from false to true.

Available Languages

Ladder Diagram

CTD		
Count Down		-(CD)
Counter	?	
Preset	?	-(DN)
Accum	?	

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

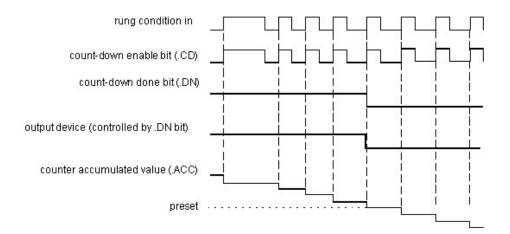
Ladder Diagram

•

Operand	Data Type	Format	Description
Counter	COUNTER	tag	Counter structure
Preset	DINT	immediate	Value of Counter.PRE.
Accum	DINT	immediate	Value of Counter.ACC.

Preset and Accum (corresponding to .PRE and .ACC in the counter tag) are pseudo-operands. For details, see Pseudo-operand initialization on page 856.

COUNTER Structure


Mnemonic	Data Type	Description
.CD	BOOL	The countdown enable bit contains rung-condition-in when the instruction was last executed.
.DN	BOOL	The done bit when clear indicates the counting operation is complete.
.0V	BOOL	The overflow bit when set indicates the counter incremented past the upper limit of 2,147,483,647.
.UN	BOOL	The underflow when set indicates the counter decremented past the lower limit of -2,147,483,648.

Mnemonic	Data Type	Description
.PRE	DINT	The preset value specifies the value which the accumulated value must reach before the instruction indicates it is done.
.ACC	DINT	The accumulated value specifies the number of transitions the instruction has counted.

Description

The CTD instruction is typically used with a CTU instruction that references the same counter structure.

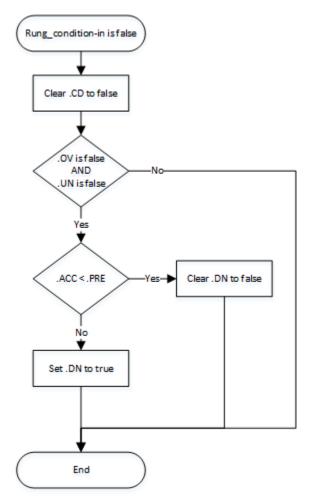
When rung-condition-in is set to true and .CD is false, .ACC will be decremented by one. When rung-condition-in is false, .CD will be cleared to false.

Affects Math Status Flags

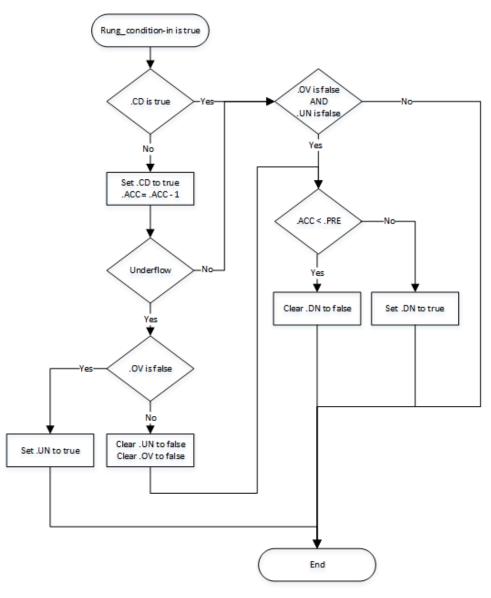
No

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

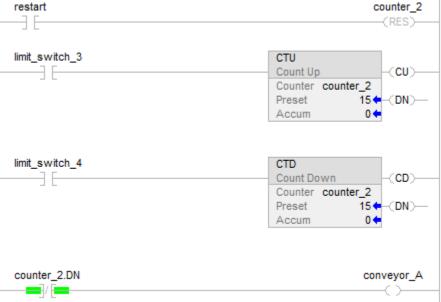

Execution

Ladder Diagram


Condition/State	Action Taken
Prescan	The .CD bit is set to true to prevent invalid decrements during the first program scan.
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in See CTD Flow Chart (False)
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in See CTD Flow Chart (True)

Condition/State	Action Taken
Postscan	N/A

CTD Flow Chart (False)



A conveyor brings parts into a buffer zone. Each time a part enters, limit_switch_3 is enabled and counter_2 increments by 1. Each time a part leaves, limit_switch_4 is enabled and counter_2 decrements by 1. If there are 100 parts in the buffer zone (counter_2.dn is true), conveyor_A turns on and stops the conveyor from bringing in any more parts until the buffer has room for more parts.

Count Up (CTU)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The CTU instruction counts upward each time the rung-condition-in transitions from false to true.

Available Languages

Ladder Diagram

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

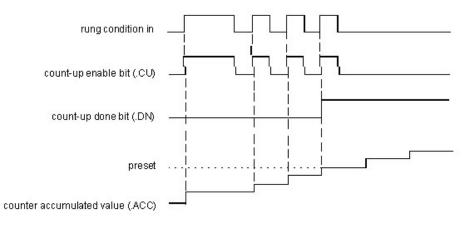
Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

Operand	Data Type	Format	Description
Counter	COUNTER	tag	Counter structure
Preset	DINT	immediate	Value of Counter.PRE.
Accum	DINT	immediate	Value of Counter.ACC.


Length (corresponding to .LEN in the control tag) is a pseudo-operand. For details, see Pseudo-operand initialization on page 856.

COUNTER Structure

Mnemonic	Data Type	Description
.CU	BOOL	The count up enable contains rung-condition-in when the instruction was last executed.
.DN	BOOL	The done bit when set indicates the counting operation is complete.
.0V	BOOL	The overflow bit when set indicates the counter incremented past the upper limit of 2,147,483,647.
.UN	BOOL	The underflow when set indicates the counter decremented past the lower limit of -2,147,483,648.
.PRE	DINT	The preset value specifies the value which the accumulated value must reach before the instruction indicates it is done.
.ACC	DINT	The accumulated value specifies the number of transitions the instruction has counted.

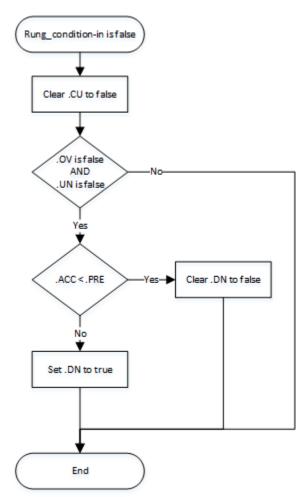
Description

When rung-condition-in is set to true and .CU is false, ACC will be incremented by one. When rung-condition-in is false, .CU will be cleared to false.

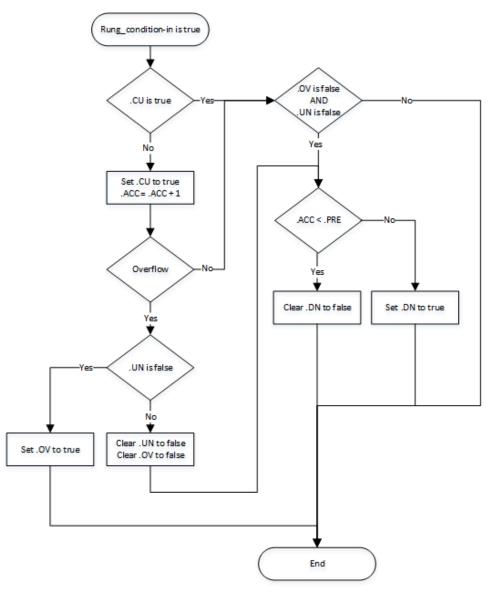
Affects Math Status Flags

No

Major/Minor Faults


None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution


Ladder Diagram

Condition/State	Action Taken
Prescan	The .CU bit is set to true to prevent invalid increments during the first program scan.
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in See CTU Flow Chart (False)
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in See CTU Flow Chart (True)
Postscan	N/A

CTU Flow Chart (False)

CTU Flow Chart (True)

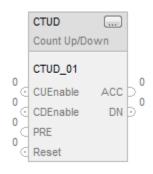
Example

Ladder Diagram

After limit_switch_1 goes from disabled to enabled 10 times, the .DN bit is set to true and light_1 turns on. If limit_switch_1 continues to go from disabled to enabled, counter_1 continues to increment its count and the .DN bit remains set. When limit_switch_2 is enabled, the RES instruction resets counter_1 (clears the status bits and the .ACC value) and light_1 turns off.

Count Up/Down (CTUD)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.


The CTUD instruction counts up by one when CUEnable transitions from clear to set. The instruction counts down by one when CDEnable transitions from clear to set.

Available Languages

Ladder Diagram

This instruction is not available in ladder diagram.

Function Block

Structured Text

CTUD(CTUD_tag)

Operands

Structured Text

Variable	Туре	Format	Description
CTUD tag	FBD_COUNTER	Structure	CTUD structure

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

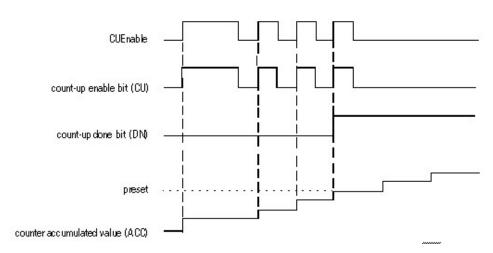
Function Block

Operand	Туре	Format	Description
CTUD tag	FBD_COUNTER	Structure	CTUD structure

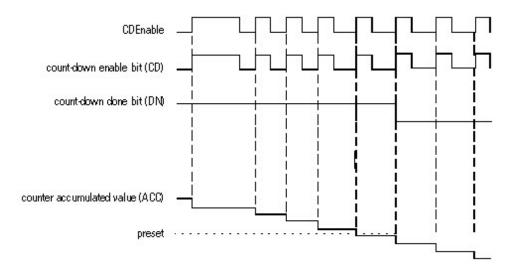
FBD_COUNTER Structure

Input Parameter	Data Type	Description
EnableIn	BOOL	If cleared, the instruction does not
		execute and outputs are not updated. If
		set, the instruction executes.
		Default is set.
CUEnable	BOOL	Enable up count. When input toggles from
		clear to set, accumulator counts up by
		one.
		Default is cleared
CDEnable	BOOL	Enable down count. When input toggles
		from clear to set, accumulator counts
		down by one.
		Default is cleared
PRE	DINT	Counter preset value. This is the value the
		accumulated value must reach before DN
		is set.
		Valid = any integer
		Default is 0
Reset	BOOL	Request to reset the timer. When set, the
		counter resets.
		Default is cleared

Output Parameter	Data Type	Description
EnableOut	BOOL	The instruction produced a valid result.
ACC	DINT	Accumulated value.
CU	BOOL	Count up enabled.
CD	BOOL	Count down enabled.
DN	BOOL	Counting done. Set when accumulated value is greater than or equal to preset.
OV	BOOL	Counter overflow. Indicates the counter exceeded the upper limit of 2,147,483,647. The counter then rolls over to -2,147,483,648 and begins counting down again.
UN	BOOL	Counter underflow. Indicates the counter exceeded the lower limit of -2,147,483,648. The counter then rolls


Output Parameter	Data Type	Description
		over to 2,147,483,647 and begins counting
		down again.

Description


When true and CUEnable is true, the CTUD instructions increments the counter by one. When true and CDEnable is true, the CTUD instruction decrements the counter by one.

Both the CUEnable and CDEnable input parameters can be toggled during the same scan. The instruction executes the count up prior to the count down.

Count Up

Count Down

When disabled, the CTUD instruction retains its accumulated value. Set the Reset input parameter to reset the instruction.

Affects Math Status Flags

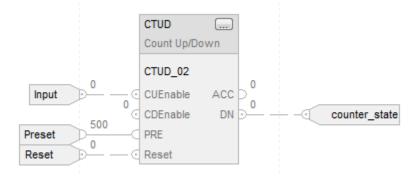
No

Major/Minor Faults

None specific to this instruction. See *Common Attributes for General Instructions* on page 849 for operand-related faults.

Execution

Function Block


Condition/State	Action Taken	
Prescan	EnableIn and EnableOut bits are cleared to false.	
Tag.EnableIn is false	EnableIn and EnableOut bits are cleared to false. Initialize data to require a "zero to one" transition of CuEnable or CdEnable to effect ACC.	
Tag.EnableIn is true	EnableIn and EnableOut bits are set to true. The instruction executes.	
Instruction first run	Initialize data to require a "zero to one" transition of CuEnable or CdEnable to effect ACC.	
Instruction first scan	Initialize data to require a "zero to one" transition of CuEnable or CdEnable to effect ACC.	
Postscan	EnableIn and EnableOut bits are cleared to false.	

Structured Text

Condition/State Action Taken		
Prescan	See Prescan in the Function Block table.	
Normal execution	See Tag.EnableIn is true in the Function Block table.	
Postscan	See Postscan in the Function Block table.	

Example

Function Block

Structured Text

CTUD_01.PRE := 500;

CTUD_01.Reset := Reset;

CTUD_01.CUEnable := Input;

CTUD(CTUD_01);

counter_state := CTUD_01.DN;

Reset (RES)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The RES instruction resets a TIMER, COUNTER, or CONTROL structure.

Available Languages

Ladder Diagram

-(RES)-

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

Operand	Data Type	Format	Description
Structure	TIMER	Tag	Structure to reset
	CONTROL		
	COUNTER		

Description

When true, the RES instruction clears these elements:

When using a RES instruction for a:	The instruction clears:
-------------------------------------	-------------------------

TIMER	.ACC value to 0 control status bits to false
COUNTER	.ACC value to 0 control status bits to false
CONTROL	.POS value to 0 control status bits to false

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Reset the specified structure.
Postscan	N/A

Example

Ladder Diagram limit_switch_5 CTU 7 F CUD Count Up Counter counter_4 Preset 10 🔶 (DN) Accum 1 🔶 limit_switch_6 TON - F (EN) Timer On Delay Timer Timer 1 Preset 180 🗧 Accum 0 🗲 limit_switch_7 BSL -] E Bit Shift Left (EN)-Array array_dint[0] Control control 1 (DN)-Source Bit limit_switch_3 3 🔶 Length limit_switch_8 counter_4 ЭF (RES) limit_switch_5 Timer_1 (RES) - F limit_switch_6 control_1 3 E (RES)

Reset Example

In the preceding example:

when limit_switch_8 is enabled, reset counter_4

when limit_switch_5 is enabled, reset Timer_1

when limit_switch_6 is enabled, reset control_1

Retentive Timer On (RTO)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The RTO instruction is a retentive timer that accumulates time when the instruction is enabled.

Available Languages

Ladder Diagram

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

Operand	Data Type	Format	Description
Timer	TIMER	tag	Timer structure
Preset	DINT	immediate	Value of Timer.PRE.
Accum	DINT	immediate	Value of Timer.ACC.

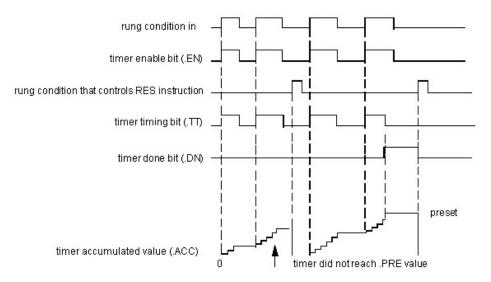
Preset and Accum (corresponding to .PRE and .ACC in the timer tag) are pseudo-operands. For details, see Pseudooperand initialization on page 856.

TIMER Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit contains rung-condition-in when the instruction was last executed.
.TT	BOOL	The timing bit when set indicates the timing operation is in process.
.DN	BOOL	The done bit when set indicates the timing operation is complete (or paused).
.PRE	DINT	The preset value specifies the value (1 millisecond units) which the accumulated value must reach before the instruction indicates it is done.

.ACC	DINT	The accumulated value specifies the
		number of milliseconds that have elapsed
		since the RTO instruction was enabled.

Description


The RTO instruction accumulates time until:

- The timer is disabled.
- The timer completes.

The time base is always 1 millisecond. For example, for a 2 second timer, enter 2000 for the .PRE value.

The timer will set the .DN bit to true when the timer completes.

When enabled, timing can be paused by setting the .DN bit to true and resumed by clearing the .DN bit to false.

How a Timer Runs

A timer runs by subtracting the time of its last scan from the current time:

ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned = current_time. This gets the timer ready for the next scan.

Affects Math Status Flags

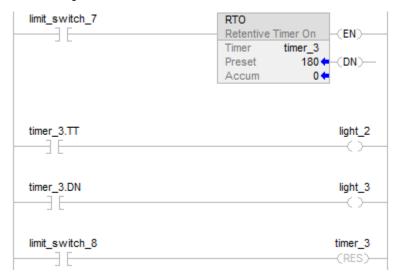
No

Major/Minor Faults

A major fault will occur if:	Fault type	Fault code
.PRE < 0	4	34
.ACC < 0	4	34

See Index through arrays on page 863 for array-indexing faults.

Execution


Ladder Diagram

Condition/State	Action Taken
Prescan	The .EN bit is cleared to false. The .TT bit is cleared to false.
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in The .EN bit is cleared to false. The .TT bit is cleared to false.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in See RTO Flow Chart (True).
Postscan	N/A

RTO Flow Chart (True)

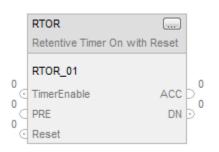
Example

Ladder Diagram

When limit_switch_7 is set, light_2 is on for 180 milliseconds (timer_3 is timing). When timer_3.acc reaches 180, light_2 goes off and light_3 goes on. Light_3 remains on until timer_3 is reset. If limit_switch_7 is cleared while timer_3 is timing, light_2 goes off. When limit_switch_8 is set, the RES instruction resets timer_3 (clears status bits and .ACC value).

Retentive Timer On with Reset (RTOR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.


The RTOR instruction is a retentive timer that accumulates time when TimerEnable is set.

Available Languages

Ladder Diagram

This instruction is not available in ladder diagram.

Function Block

Structured Text

RTOR(RTOR_tag)

Operands

Structured Text

Variable	Туре	Format	Description
RTOR tag	FBD_TIMER	Structure	RTOR structure

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Function Block

Operand	Туре	Format	Description
RTOR tag	FBD_TIMER	Structure	RTOR structure

FBD_TIMER Structure

Input Parameter	Data Type	Description
EnableIn	BOOL	If cleared, the instruction does not execute and outputs are not updated. If set, the instruction executes. Default is set.
TimerEnable	BOOL	If set, this enables the timer to run and accumulate time. Default is cleared.
PRE	DINT	Timer preset value. This is the value in 1 msec units that ACC must reach before timing is finished. If invalid, the

Input Parameter	Data Type	Description
		instruction sets the appropriate bit in
		Status and the timer does not execute.
		Valid = 0 to maximum positive integer
Reset	BOOL	Request to reset the timer. When set, the
		timer resets.
		When the Reset input parameter is set,
		the instruction clears EN, TT and DN and
		sets ACC = 0.

Output Parameter	Data Type	Description
EnableOut	BOOL	The instruction produced a valid result.
ACC	DINT	Accumulated time in milliseconds.
		This value is retained even while the
		TimerEnable input is cleared.
EN	BOOL	Timer enabled output. Indicates the timer
		instruction is enabled.
TT	BOOL	Timer timing output. When set, a timing
		operation is in progress.
DN	BOOL	Timing done output. Indicates when
		accumulated time is greater than or equal
		to preset.
Status	DINT	Status of the function block.
InstructFault (Status.0)	BOOL	The instruction detected one of the
		following execution errors. This is not a
		minor or major controller error. Check the
		remaining status bits to determine what
		occurred.
PresetInv (Status.1)	BOOL	The preset value is invalid.

Description

The RTOR instruction accumulates time until it is false. When the RTOR instruction is false, it retains its ACC value. You must clear the .ACC value using the Reset input.

The time base is always 1 msec. For example, for a 2-second timer, enter 2000 for the PRE value.

Set the Reset input parameter to reset the instruction. If TimerEnable is set when Reset is set, the RTOR instruction begins timing again when Reset is cleared.

How a Timer Runs

A timer runs by subtracting the time of its last scan from the current time:

- ACC = ACC + (current_time last_time_scanned)
- After it updates the ACC, the timer sets last_time_scanned= current_time. This gets the timer ready for the next scan.

IMPORTANT: Be sure to scan the timer at least every 69 minutes while it runs. Otherwise, the ACC value won't be correct.

The last_time_scanned value has a range of up to 69 minutes. The timer's calculation rolls over if you don't scan the timer within 69 minutes. The ACC value won't be correct if this happens.

While a timer runs, scan it within 69 minutes if you put it in a:

- Subroutine
- Section of code that is between JMP and LBL instructions
- Sequential function chart (SFC)
- Event or periodic task
- State routine of a phase

Affects Math Status Flags

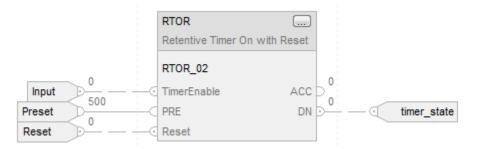
No

Major/Minor Faults

None specific to this instruction. See *Common Attributes for General Instructions* on page 849 for operand-related faults.

Execution

Function Block


Condition/State	Action Taken	
Prescan	EnableIn and EnableOut bits are cleared to false.	
Tag.EnableIn is false	EnableIn and EnableOut bits are cleared to false.	
Tag.EnableIn is true	EnableIn and EnableOut bits are set to true. The instruction executes. When the Reset input parameter is set, the instruction clears EN, TT and DN and sets ACC = 0.	
Instruction first run	EN, TT and DN are cleared to false. The instruction executes.	
Instruction first scan	N/A	
Postscan	EnableIn and EnableOut are cleared to false.	

Structured Text

Condition/State	Action Taken	
Prescan	See Prescan in the Function Block table.	
Normal execution	See Tag.EnableIn is true in the Function Block table.	
Postscan	See Postscan in the Function Block table.	

Example

Function Block

Structured Text

RTOR_01.PRE := 500;

RTOR_01.Reset := Reset;

RTOR_01.TimerEnable := Input;

RTOR(RTOR_01);

timer_state := RTOR_01.DN;

Timer Off Delay (TOF)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The TOF instruction is a non-retentive timer that accumulates time when the instruction is enabled (rung-conditionin is false).

Available Languages

Ladder Diagram

TOF]
 Timer Off Delay		-(EN)
Timer	?	
Preset	?	
Accum	?	

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

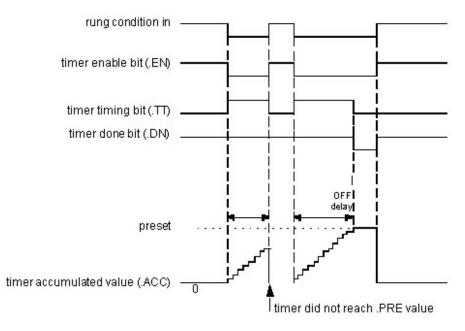
Ladder Diagram

Operand	Data Type	Format	Description
Timer	TIMER	tag	Timer structure
Preset	DINT	immediate	Value of Timer.PRE.
Accum	DINT	immediate	Value of Timer.ACC.

Preset and Accum (corresponding to .PRE and .ACC in the timer tag) are pseudo-operands. For details, see Pseudo-operand initialization on page 856.

TIMER Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit contains rung-condition-in when the instruction was last executed.
.TT	BOOL	The timing bit when set indicates the timing operation is in process.
.DN	BOOL	The done bit when cleared indicates the timing operation is complete (or paused).
.PRE	DINT	The preset value specifies the value (1 millisecond units) which the accumulated value must reach before the instruction indicates it is done.
.ACC	DINT	The accumulated value specifies the number of milliseconds that have elapsed since the TOF instruction was enabled.


The TOF instruction accumulates time until:

- The timer is disabled
- The timer completes

The time base is always 1 millisecond. For example, for a 2 second timer, enter 2000 for the .PRE value.

The timer will clear the .DN bit to false when the timer completes.

When enabled, timing can be paused by clearing the .DN bit to false and resumed by setting the .DN bit to true.

How a Timer Runs

A timer runs by subtracting the time of its last scan from the current time:

ACC = ACC + (current_time - last_time_scanned)

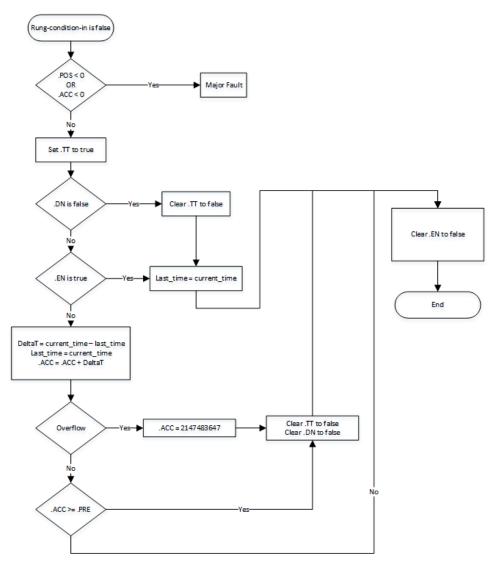
After it updates the ACC, the timer sets last_time_scanned = current_time. This gets the timer ready for the next scan.

Affects Math Status Flags

No

Major/Minor Faults

A major fault will occur if:	Fault type	Fault code
.PRE < 0	4	34
.ACC < 0	4	34


See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	The .EN bit is cleared to false.
	The .TT bit is cleared to false.
	The .DN bit is cleared to false.
	The .ACC value is set to equal the .PRE value.
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
	See TOF Flow Chart (False).
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in
	The .EN bit is set to true.
	The .TT bit is cleared to false.
	The .DN bit is set to true.
	The .ACC value is cleared to zero.
Postscan	The .EN bit is cleared to false.
	The .TT bit is cleared to false.
	The .DN bit is cleared to false.
	The .ACC value is set to equal the .PRE value.

TOF Flow Chart (False)

Example

Ladder Diagram

When limit_switch_9 is cleared, light_8 is on for 180 milliseconds (timer_2 is timing). When timer_2.acc reaches 180, light_8 goes off and light_4 goes on. Light_4 remains on until the TOF instruction is enabled. If limit_switch_9 is true while timer_2 is timing, light_8 goes off.

Timer Off Delay with Reset (TOFR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The TOFR instruction is a non-retentive timer that accumulates time when TimerEnable is cleared.

Available Languages

Ladder Diagram

This instruction is not available in ladder diagram.

Function Block

Structured Text

TOFR(TOFR_tag)

Operands

Structured Text

Variable	Туре	Format	Description
TOFR tag	FBD_TIMER	Structure	TOFR structure

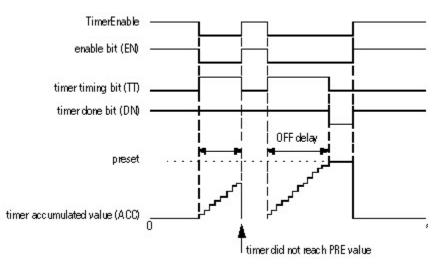
See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Function Block

Operand	Туре	Format	Description
TOFR tag	FBD_TIMER	Structure	TOFR structure

FBD_TIMER Structure

Input Parameters	Data Type	Description
EnableIn	BOOL	If cleared, the instruction does not
		execute and outputs are not updated. If
		set, the instruction executes.


Input Parameters	Data Type	Description
		Default is set.
TimerEnable	BOOL	If cleared, this enables the timer to run and accumulate time. Default is cleared.
PRE	DINT	Timer preset value. This is the value in 1 msec units that ACC must reach before timing is finished. If invalid, the instruction sets the appropriate bit in Status and the timer does not execute. Valid = 0 to maximum positive integer
Reset	BOOL	Request to reset the timer. When set, the timer resets. Default is cleared. When the Reset input parameter is set, the instruction clears EN, TT and DN and sets ACC = PRE. Note that this is different than using a RES instruction on a TOF instruction.

Output Parameters	Data Type	Description
EnableOut	BOOL	The instruction produced a valid result.
ACC	BOOL	Accumulated time in milliseconds.
EN	BOOL	Timer enabled output. Indicates the timer instruction is enabled.
TT	BOOL	Timer timing output. When set, a timing operation is in progress.
DN	BOOL	Timing done output. Indicates when accumulated time is greater than or equal to preset.
Status	DINT	Status of the function block.
InstructFault (Status.0)	BOOL	The instruction detected one of the following execution errors. This is not a minor or major controller error. Check the remaining status bits to determine what occurred.
PresetInv (Status.1)	BOOL	The preset value is invalid.

When true, the TOFR instruction accumulates time until the:

- TOFR instruction is disabled
 - ACC is greater than or equal to PRE

The time base is always 1 msec. For example, for a 2-second timer, enter 2000 for the PRE value.

Set the Reset input parameter to reset the instruction. If TimerEnable is false when Reset is true, the TOFR instruction does not begin timing again when Reset is false.

How a Timer Runs

A timer runs by subtracting the time of its last scan from the current time:

ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned= current_time. This gets the timer ready for the next scan.

IMPORTANT: Be sure to scan the timer at least every 69 minutes while it runs. Otherwise, the ACC value won't be correct.

The last_time_scanned value has a range of up to 69 minutes. The timer's calculation rolls over if you don't scan the timer within 69 minutes. The ACC value won't be correct if this happens.

While a timer runs, scan it within 69 minutes if you put it in a:

- Subroutine
- Section of code that is between JMP and LBL instructions
- Sequential function chart (SFC)
- Event or periodic task
- State routine of a phase

Affects Math Status Flags

No

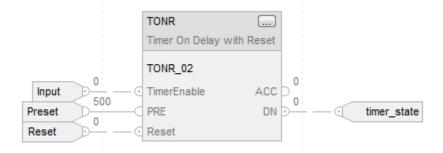
Major/Minor Faults

None specific to this instruction. See *Common Attributes for General Instructions* on page 849 for operand-related faults.

Execution

Function Block

Condition/State	Action Taken
Prescan	EnableIn and EnableOut bits are cleared to false.
Tag. EnableIn is false	EnableIn and EnableOut bits are cleared to false.
Tag. Enableln is true	EnableIn and EnableOut bits are set to true. The main algorithm of the instruction will be executed and outputs will be updated.
Instruction first run	N/A
Instruction first scan	EN, TT and DN are cleared ACC value is not modified.
Postscan	EnableIn and EnableOut bits are cleared to false.


Structured Text

Condition/State	Action Taken
Prescan	See Prescan in the Function Block table.
Normal execution	See Tag.EnableIn is true in the Function Block table.
Postscan	See Postscan in the Function Block table.

Example

Each scan after limit_switch1 is cleared, the TOFR instruction increments the ACC value by elapsed time until the ACC value reaches the PRE value. When ACC \geq PRE, the DN parameter is cleared, and timer_state2 is set.

Function Block

Structured Text

TOFR_01.PRE := 500;

TOFR_01.Reset := Reset;

TOFR_01.TimerEnable := Input;

TOFR(TOFR_01);

timer_state := TOFR_01.DN;

Timer On Delay (TON)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The TON instruction is a non-retentive timer that accumulates time when the instruction is enabled.

Available Languages

Ladder Diagram

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

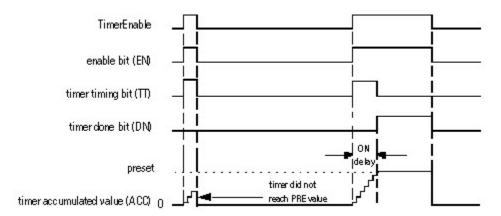
Ladder Diagram

Operand	Data Type	Format	Description
Timer	TIMER	tag	Timer structure
Preset	DINT	immediate	Value of Timer.PRE.
Accum	DINT	immediate	Value of Timer.ACC.

Preset and Accum (corresponding to .PRE and .ACC in the timer tag) are pseudo-operands. For details, see Pseudo-operand initialization on page 856.

TIMER Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit contains rung-condition-in when the instruction was last executed.
.TT	BOOL	The timing bit when set indicates the timing operation is in process.
.DN	BOOL	The done bit when set indicates the timing operation is complete (or paused).
.PRE	DINT	The preset value specifies the value (1 millisecond units) which the accumulated value must reach before the instruction indicates it is done.
.ACC	DINT	The accumulated value specifies the number of milliseconds that have elapsed since the TON instruction was enabled.


The TON instruction accumulates time from the time it is enabled until:

- The timer is disabled
- The timer completes

The time base is always 1 millisecond. For example, for a 2 second timer, enter 2000 for the .PRE value.

The timer will set the .DN bit to true when the timer completes.

When enabled, timing can be paused by setting the .DN bit to true and resumed by clearing the .DN bit to false.

How a Timer Runs

A timer runs by subtracting the time of its last scan from the current time:

ACC = ACC + (current_time - last_time_scanned)

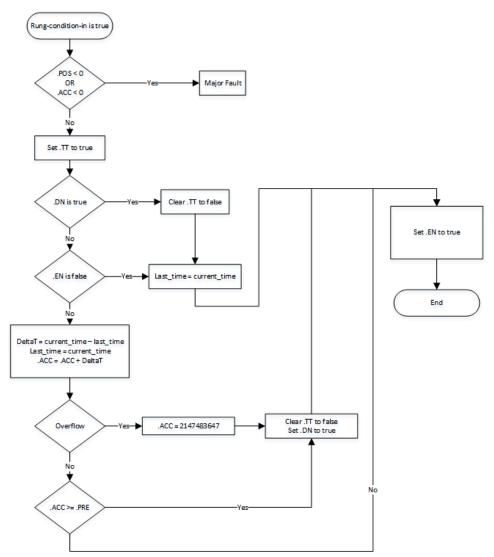
After it updates the ACC, the timer sets last_time_scanned = current_time. This gets the timer ready for the next scan.

Affects Math Status Flags

No

Major/Minor Faults

A major fault will occur if:	Fault type	Fault code
.PRE < 0	4	34
0 > 33A.	4	34


See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	The .EN bit is cleared to false.
	The .TT bit is cleared to false.
	The .DN bit is cleared to false.
	The .ACC value is cleared to zero.
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
	The .EN bit is cleared to false.
	The .TT bit is cleared to false.
	The .DN bit is cleared to false.
	The .ACC value is cleared to zero.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in
	See TON Flow Chart (True)
Postscan	The .EN bit is cleared to false.
	The .TT bit is cleared to false.
	The .DN bit is cleared to false.
	The .ACC value is cleared to zero.

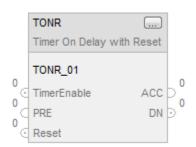
Example

Ladder Diagram

When limit_switch_10 is set to true, light_6 is on for 20000 milliseconds (Timer_4 is timing). When Timer_4.acc reaches 20000, light_6 goes off and light_7 goes on. If limit_switch_10 is cleared to false while Timer_4 is timing, light_6 goes off. When limit_switch_10 is cleared to false, Timer_4 status bits and .ACC value are reset.

Timer On Delay with Reset (TONR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.


The TONR instruction is a non-retentive timer that accumulates time when TimerEnable is set.

Available Languages

Ladder Diagram

This instruction is not available in ladder diagram.

Function Block

Structured Text

TONR(TONR_tag);

Operands

Structured Text

Operand	Туре	Format	Description
TONR tag	FBD_TIMER	Structure	TONR structure

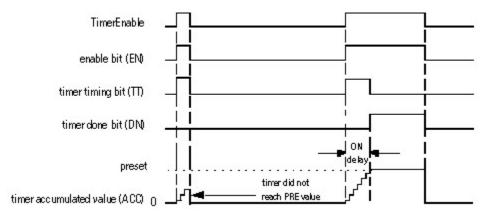
See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Function Block

Operand	Туре	Format	Description
TONR tag	FBD_TIMER	Structure	TONR structure

FBD_TIMER Structure

Input Parameter	Data Type	Description
-----------------	-----------	-------------


EnableIn	BOOL	If cleared, the instruction does not
		execute and outputs are not updated. If
		set, the instruction executes.
		Default is set.
TimerEnable	BOOL	If set, this enables the timer to run and
		accumulate time.
		Default is cleared.
PRE	DINT	Timer preset value. This is the value
		in 1 msec units that ACC must reach
		before timing is finished. If invalid, the
		instruction sets the appropriate bit in
		Status and the timer does not execute.
		Valid = 0 to maximum positive integer
Reset	BOOL	Request to reset the timer. When set, the
		timer resets.
		Default is cleared.
		When the Reset input parameter is set,
		the instruction clears EN, TT and DN and
		sets ACC = 0.

Output Parameter	Data Type	Description
EnableOut	BOOL	The instruction produced a valid result.
ACC	BOOL	Accumulated time in milliseconds.
ENF	BOOL	Timer enabled output. Indicates the timer instruction is enabled.
ΤΤ	BOOL	Timer timing output. When set, a timing operation is in progress.
DN	BOOL	Timing done output. Indicates when accumulated time is greater than or equal to preset.
Status	DINT	Status of the function block.
InstructFault (Status.0)	BOOL	The instruction detected one of the following execution errors. This is not a minor or major controller error. Check the remaining status bits to determine what occurred.
PresetInv (Status.1)	BOOL	The preset value is invalid.

When true, the TONR instruction accumulates time until the:

- TONR instruction is disabled
- ACC ≥ PRE

The time base is always 1 msec. For example, for a 2-second timer, enter 2000 for the PRE value.

Set the Reset input parameter to reset the instruction. If TimerEnable is set when Reset is true, the TONR instruction begins timing again when Reset is false.

How a Timer Runs

A timer runs by subtracting the time of its last scan from the current time:

ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned= current_time. This gets the timer ready for the next scan.

IMPORTANT: Be sure to scan the timer at least every 69 minutes while it runs. Otherwise, the ACC value will not be correct.

The last_time_scanned value has a range of up to 69 minutes. The timer's calculation rolls over if you don't scan the timer within 69 minutes. The ACC value won't be correct if this happens.

While a timer runs, scan it within 69 minutes if you put it in a:

- Subroutine
- Section of code that is between JMP and LBL instructions
- Sequential function chart (SFC)
- Event or periodic task
- State routine of a phase

Affects Math Status Flags

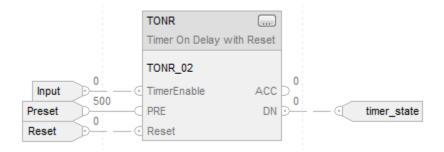
No

Major/Minor Faults

None specific to this instruction. See *Common Attributes for General Instructions* on page 849 for operand-related faults.

Execution

Function Block


Condition/State	Action Taken
Prescan	EnableIn and EnableOut bits are cleared to false.
Tag.EnableIn is false	EnableIn and EnableOut bits are cleared to false.
Tag.EnableIn is true	EnableIn and EnableOut bits are set to true. The main algorithm of the instruction is executed and outputs are updated.
Instruction first run	N/A
Instruction first scan	EN, TT and DN are cleared ACC value is set to 0.
Postscan	EnableIn and EnableOut bits are cleared to false.

Structured Text

Condition/State	Action Taken
Prescan	See Prescan in the Function Block table.
Normal execution	See Tag.EnableIn is true in the Function Block table.
Postscan	See Postscan in the Function Block table.

Example

Function Block

Structured Text

TONR_01.PRE := 500;

TONR_01.Reset := Reset;

TONR_01.TimerEnable := Input;

TONR(TONR_01);

timer_state := TONR_01.DN;

Input/Output Instructions

The input/output instructions read or write data to or from the controller or a block of data to or from another module on another network.

Available Instructions

Ladder Diagram and Structured Text

MSG on page 127	GSV on page 162	SSV on page 162	IOT on page 189
-----------------	-----------------	-----------------	-----------------

Function Block

Not available

If you want to:	Use this instruction:
Send data to or from another module	MSG
Get controller status information	GSV
Set controller status information	SSV
Send output values to an I/O module or consuming controller at	IOT
a specific point in your logic	
Trigger an event task in another controller	

Message (MSG)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The MSG instruction asynchronously reads or writes a block of data to another module on a network.

This is a transitional instruction. Follow these steps when using it:

- In ladder logic, insert an instruction to toggle the rung-condition-in from false to true each time the instruction should execute.
- In a Structured Text routine, insert a condition for the instruction to cause it to execute only on a transition.

Available Languages

Ladder Diagram

MSG	
 Message	-(EN)
Message Control	?(DN)-
	-(ER)-

Function Block

This instruction is not available in function block.

Structured Text

MSG(MessageControl);

Operands

Ladder Diagram

Operand	Туре	Format	Description
Message	MSG	tag	Message structure

Structured Text

Operand	Туре	Format	Description
Message	MSG	tag	Message structure

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

MESSAGE Structure

IMPORTANT: If you check the status bits more than once:

Use a copy of the bits if you check them in more than one place in your logic. Otherwise, the bits may change during the scan and your logic won't work as you expect it.

One way to make a copy is to use the FLAGS word. Copy the FLAGS word to another tag and check the bits in the copy.

IMPORTANT: Do not change the following bits of a MSG instruction:

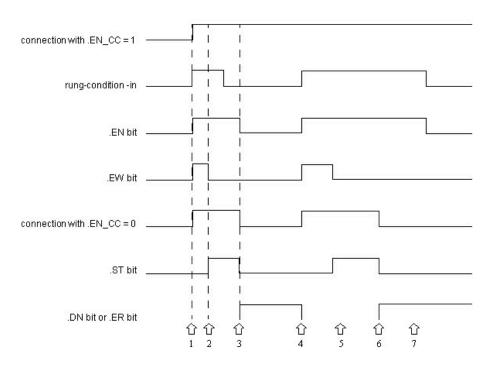
- DN
- EN
- ER
- EW
- ST

Do not change these bits either by themselves or as part of the FLAGS word. If you do, the controller may have a nonrecoverable fault. The controller clears the project from its memory when it has a non-recoverable fault.

Mnemonic	Data Type	Description	
.FLAGS	INT	The .FLAGS member provides access to the status members (bits) in one, 16-bit word.	
		This bit	ls this member
		2	.EW
		4	.ER
		5	.DN

Mnemonic Data Type Description			
		6 .ST	
		7EN	
		8	
		9 .EN_CC	
		Important: Do not change the EW, ER, DN, or ST bits of	
		the FLAGS member. For example, do not clear the entire	46
		FLAGS word. The controller ignores the change and uses	tne
		internally-stored values of the bits.	
.ERR	INT	If the .ER bit is set, the error code word identifies error c	odes
		for the MSG instruction.	
.EXERR	INT	The extended error code word specifies additional error	code
		information for some error codes.	
.REQ_LEN	INT	The requested length specifies how many words the mes	sage
		instruction will attempt to transfer.	
.DN_LEN	INT	The done length identifies how many words actually trans	sferred.
.EW	BOOL	The enable waiting bit is set when the controller detects	that a
		message request has entered the queue. The controller r	esets
		the.EW bit when the.ST bit is set.	
		Important: Do not change the EW bit. The controller igno	res the
		change and uses the internally-stored value of the bit.	
.ER	BOOL	The error bit is set when the controller detects that a trai	nsfer
		failed. The .ER bit is reset the next time the EnableIn goe	s from
		false to true.	
		Important: Do not change the ER bit. The controller igno	res the
		change and uses the internally-stored value of the bit.	
.DN	BOOL	The done bit is set when the last packet of the message i	S
		successfully transferred. The .DN bit is reset the next tim	e the
		EnableIn goes from false to true.	
		Important: Do not change the DN bit. The controller igno	res the
		change and uses the internally-stored value of the bit.	
.ST	BOOL	The start bit is set when the controller begins executing	the MSG
		instruction. The .ST bit is reset when the .DN bit or the .E	R bit is
		set.	
		Important: Do not change the ST bit. The controller ignor	res the
		change and uses the internally-stored value of the bit.	
.EN	BOOL	The enable bit is set when the EnableIn goes true and rer	
		set until either the .DN bit or the .ER bit is set and the En	
		is false. If the EnableIn goes false, but the .DN bit and the	ER bit
		are cleared, the .EN bit remains set.	*****
		Important: Do not change the EN bit. The controller igno	res the
		change and uses the internally-stored value of the bit.	

Chapter 4 Input/Output Instructions


Mnemonic	Data Type	Description		
ТО	BOOL	If you manually set the .TO bi	t, the controller stops processing	
		the message and sets the .EF	bit.	
EN_CC	BOOL	The enable cache bit determi	nes how to manage the MSG	
		connection. If you want the c	ontroller to maintain the	
		connection (such as when yo	u repeat the same MSG instructior	
		many times), set the .EN_CC I	oit. If you rarely execute the MSG	
		instruction and have other ne	eds for a controller connection,	
		clear the .EN_CC bit.		
			ions going out the serial port are	
		not cached, even if the .EN_C		
ERR_SRC	SINT	Shows the error path in the M	essage Configuration dialog.	
.DestinationLink	INT	To change the Destination Lir	nk of a DH+ or CIP with Source ID	
		message, set this member to	the required value.	
DestinationNode	INT	To change the Destination No	de of a DH+ or CIP with Source ID	
		message, set this member to	the required value.	
SourceLink	INT	To change the Source Link of	a DH+ or CIP with Source ID	
		message, set this member to	the required value.	
Class	INT	To change the Class paramet	er of a CIP Generic message, set	
		this member to the required	value.	
.Attribute	INT	To change the Attribute para	To change the Attribute parameter of a CIP Generic message,	
		set this member to the requir	red value.	
Instance	DINT	To change the Instance para	neter of a CIP Generic message,	
		set this member to the requir	ed value.	
.LocalIndex	DINT	If you use an asterisk [*] to d	esignate the element number of	
		the local array, the LocalInde	x provides the element number. To	
		change the element number,	set this member to the required	
		value.		
		If the message:	Then the local array is the:	
		Reads data	Destination element	
		Writes data	Source element	
Channel	SINT	To send the message out a di	fferent channel of the 1756-DHRIO	
			he required value. Use either the	
		ASCII character A or B.	ASCII character A or B.	
.Rack	SINT	To change the rack number f	or a block transfer message, set	
		this member to the required	rack number (octal).	
Group	SINT	To change the group number	for a block transfer message, set	
		this member to the required	-	
Slot	SINT	To change the slot number fo	r a block transfer message, set	
		this member to the required		
		If the message goes over	Then specify the slot numbe	
		this network:	in:	

Data Type	Description	Description	
	Universal remote I/O	octal	
	ControlNet	decimal (0-15)	
STRING	To send the message to a	different controller, set this member	
	to the new path.		
	Enter the path as hexade	cimal values.	
	Omit commas [,]		
	For example, for a path of	f 1, 0, 2, 42, 1, 3, enter	
	\$01\$00\$02\$2A\$01\$03.		
	To browse to a device and	d automatically create a portion or	
	all of the new string, right	t-click a string tag and choose Go to	
	Message Path Editor.		
DINT	If you use an asterisk [*]	to designate the element number	
	of the remote array, the F	RemoteIndex provides the element	
	number. To change the el	ement number, set this member to the	
	required value.		
	If the message	Then the remote array is the	
	Reads data	Source element	
	Writes data	Destination element	
STRING	To specify a different tag	or address in the controller to which	
	the message is sent, set t	this member to the required value.	
	Enter the tag or address a	as ASCII characters.	
	If the message	Then the remote array is the	
	Reads data	Source element	
	Writes data	Destination element	
DINT	The time out for an uncor	nnected message or for making a	
	connection. The default v	alue is 30 seconds.	
	If the message is unconn	ected, the ER bit turns on	
	if the controller doesn't g	et a response within the	
	UnconnectedTimeout tim		
	-	ted, the ER bit turns on if the controlle	
		r making the connection within the	
	UnconnectedTimeout tim	e	
DINT		message once it has a connection.	
SINT		sponse from the other device.	
		after the connection is made.	
		plier is 0 (which equates to a	
	The default time out for c	connected messages is 30 seconds (7.	
	DINT DINT DINT DINT DINT DINT DINT DINT	Vite Universal remote I/O ControlNet ControlNet STRING To send the message to a to the new path. Enter the path as hexade Omit commas [,] For example, for a path o \$01\$00\$02\$2A\$01\$03. To browse to a device an all of the new string, righ Message Path Editor. DINT If you use an asterisk [*] of the remote array, the function and the message Reads data Writes data STRING To specify a different tag the message is sent, set tente the tag or address is first eata Intro If the message Reads data Writes data DINT To specify a different tag the message is sent, set tenter the tag or address is if the message is sent, set tenter the tag or address is if the message is unconn if the controller doesn't g DINT The time out for an uncord connection. The default vis for the response for UnconnectedTimeout time if the controller doesn't get a response for UnconnectedTimeout time if the message is unconne if the controller doesn't get a response for UnconnectedTimeout time if the message is connected time out sfor the response for UnconnectedTimeout time if the default Connection is for the response for UnconnectedTimeout time if the default Connection is for the response for UnconnectedTimeout time is for the response f	

Mnemonic	Data Type	Description	
		To change the time out, change the ConnectionRate and leave	
		the TimeoutMultiplier at the default value.	

The MSG instruction transfers elements of data. This is a transitional instruction:

- In ladder diagram, toggle the EnableIn from cleared to set each time the instruction executes.
- The size of each element depends on the data types you specify and the type of message command you use.

Where	Description
1	EnableIn is true
	.EN is set
	.EW is set
	connection is opened
2	message is sent
	.ST is set
	.EW is cleared
3	message is done or errored EnableIn is false
	.DN or .ER is set
	.ST is cleared
	connection is closed (if .EN_CC = 0)
	.EN is cleared (because the EnableIn is false)
4	EnableIn is true and .DN or .ER was previously set
	.EN is set
	.EW is set
	connection is opened

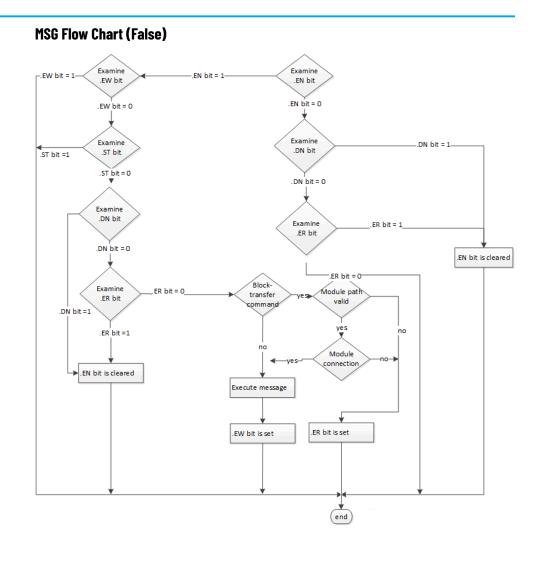
Where	Description
	.DN or .ER is cleared
5	message is sent
	.ST is set
	.EW is cleared
6	message is done or errored and EnableIn is still true
	.DN or .ER is set
	.ST is cleared
	connection is closed (if .EN_CC = 0)
7	EnableIn goes false and .DN or .ER is set
	.EN is cleared

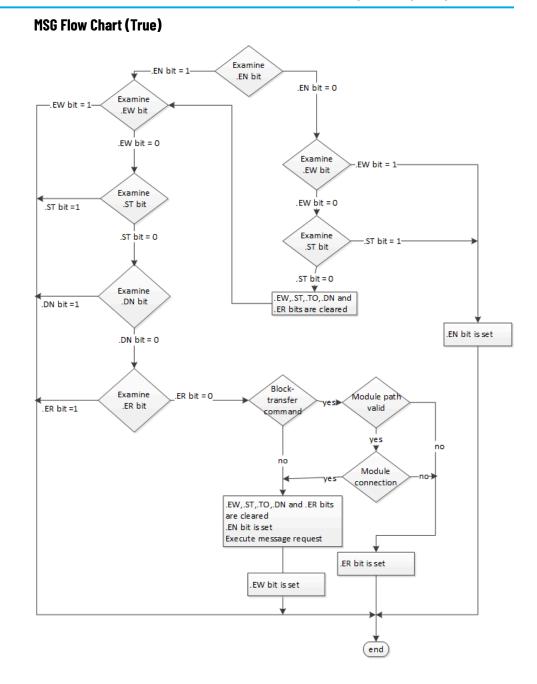
Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Common Attributes for operand-related faults.


Execution


Ladder Diagram

Condition/State	Action Taken
Prescan	The .EWS, .ST, .DN, and .ER bits are cleared.
Rung-condition-in is false	See MSG Flow Chart (False)
Rung-condition-in is true	See MSG Flow Chart (True)
Postscan	N/A

Structured Text

Condition/State	Action Taken
Prescan	See Prescan in the Ladder Diagram table
Normal execution	See MSG Flow Chart (True)
Postscan	See Postscan in the Ladder Diagram table

Example

Ladder Diagram

Structured Text

MSG (MessageControl);

Message (MSG)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The MSG instruction asynchronously reads or writes a block of data to another module on a network.

This is a transitional instruction. Follow these steps when using it:

- In ladder logic, insert an instruction to toggle the rung-condition-in from false to true each time the instruction should execute.
- In a Structured Text routine, insert a condition for the instruction to cause it to execute only on a transition.

Available Languages

Ladder Diagram

•

	MSG		
_	Message		-(EN)
	Message Control	?	-(DN)-
			-(ER)

Function Block

This instruction is not available in function block.

Structured Text

MSG(MessageControl);

Operands

Ladder Diagram

Operand	Туре	Format	Description
Message	MSG	tag	Message structure

Structured Text

Operand	Туре	Format	Description
Message	MSG	tag	Message structure

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

MESSAGE Structure

IMPORTANT: If you check the status bits more than once:

Use a copy of the bits if you check them in more than one place in your logic. Otherwise, the bits may change during the scan and your logic won't work as you expect it.

One way to make a copy is to use the FLAGS word. Copy the FLAGS word to another tag and check the bits in the copy.

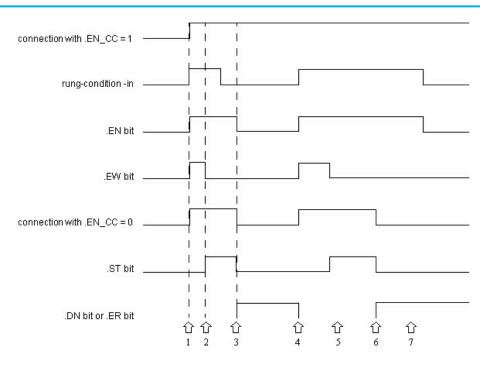
IMPORTANT: Do not change the following bits of a MSG instruction:

- DN
- EN
- ER
- EW
- ST

Do not change these bits either by themselves or as part of the FLAGS word. If you do, the controller may have a non-recoverable fault. The controller clears the project from its memory when it has a non-recoverable fault.

Mnemonic	Data Type	Description
.FLAGS	INT	The .FLAGS member provides access to the status members
		(bits) in one, 16-bit word.
		This bit Is this member
		2 .EW
		4 .ER
		5 .DN
		6 .ST
		7 .EN
		8 .TO
		9 .EN_CC
		Important: Do not change the EW, ER, DN, or ST bits of the FLAGS member. For example, do not clear the entire FLAGS word. The controller ignores the change and uses the internally-stored values of the bits.
.ERR	INT	If the .ER bit is set, the error code word identifies error codes for the MSG instruction.
.EXERR	INT	The extended error code word specifies additional error code information for some error codes.
.REQ_LEN	INT	The requested length specifies how many words the message instruction will attempt to transfer.
.DN_LEN	INT	The done length identifies how many words actually transferred.

Chapter 4 Input/Output Instructions


Mnemonic	Data Type	Description
.EW	BOOL	The enable waiting bit is set when the controller detects that a
		message request has entered the queue. The controller resets
		the.EW bit when the.ST bit is set.
		Important: Do not change the EW bit. The controller ignores the
		change and uses the internally-stored value of the bit.
.ER	BOOL	The error bit is set when the controller detects that a transfer
		failed. The .ER bit is reset the next time the EnableIn goes from
		false to true.
		Important: Do not change the ER bit. The controller ignores the
		change and uses the internally-stored value of the bit.
.DN	BOOL	The done bit is set when the last packet of the message is
		successfully transferred. The .DN bit is reset the next time the
		EnableIn goes from false to true.
		Important: Do not change the DN bit. The controller ignores the
		change and uses the internally-stored value of the bit.
.ST	BOOL	The start bit is set when the controller begins executing the MSG
		instruction. The .ST bit is reset when the .DN bit or the .ER bit is
		set.
		Important: Do not change the ST bit. The controller ignores the
		change and uses the internally-stored value of the bit.
.EN	BOOL	The enable bit is set when the EnableIn goes true and remains
		set until either the .DN bit or the .ER bit is set and the EnableIn
		is false. If the EnableIn goes false, but the .DN bit and the .ER bit
		are cleared, the .EN bit remains set.
		Important: Do not change the EN bit. The controller ignores the
		change and uses the internally-stored value of the bit.
.TO	BOOL	If you manually set the .TO bit, the controller stops processing
		the message and sets the .ER bit.
.EN_CC	BOOL	The enable cache bit determines how to manage the MSG
		connection. If you want the controller to maintain the
		connection (such as when you repeat the same MSG instruction
		many times), set the .EN_CC bit. If you rarely execute the MSG
		instruction and have other needs for a controller connection,
		clear the .EN_CC bit.
		Connections for MSG instructions going out the serial port are
		not cached, even if the .EN_CC bit is set.
.ERR_SRC	SINT	Shows the error path in the Message Configuration dialog.
.DestinationLink	INT	To change the Destination Link of a DH+ or CIP with Source ID
		message, set this member to the required value.
.DestinationNode	INT	To change the Destination Node of a DH+ or CIP with Source ID
		message, set this member to the required value.

Mnemonic	Data Type	Description
.SourceLink	INT	To change the Source Link of a DH+ or CIP with Source ID
		message, set this member to the required value.
.Class	INT	To change the Class parameter of a CIP Generic message, se
		this member to the required value.
.Attribute	INT	To change the Attribute parameter of a CIP Generic message
		set this member to the required value.
.Instance	DINT	To change the Instance parameter of a CIP Generic message
		set this member to the required value.
.LocalIndex	DINT	If you use an asterisk [*] to designate the element number o
		the local array, the LocalIndex provides the element number.
		change the element number, set this member to the required
		value.
		If the message: Then the local array is the
		Reads data Destination element
		Writes data Source element
.Channel	SINT	To send the message out a different channel of the 1756-DHR
		module, set this member to the required value. Use either the
		ASCII character A or B.
.Rack	SINT	To change the rack number for a block transfer message, se
		this member to the required rack number (octal).
.Group	SINT	To change the group number for a block transfer message, s
		this member to the required group number (octal).
.Slot	SINT	To change the slot number for a block transfer message, set
		this member to the required slot number.
		If the message goes over Then specify the slot num
		this network: in:
		Universal remote I/O octal
		ControlNet decimal (0-15)
.Path	STRING	To send the message to a different controller, set this memb
		to the new path.
		Enter the path as hexadecimal values.
		Omit commas [,]
		For example, for a path of 1, 0, 2, 42, 1, 3, enter
		\$01\$00\$02\$2A\$01\$03.
		To browse to a device and automatically create a portion or
		all of the new string, right-click a string tag and choose Go to
		Message Path Editor.
.RemoteIndex	DINT	If you use an asterisk [*] to designate the element number
		of the remote array, the RemoteIndex provides the element
		number. To change the element number, set this member to
		required value.

Mnemonic	Data Type	Description	
		If the message	Then the remote array is the
		Reads data	Source element
		Writes data	Destination element
.RemoteElement	STRING	To specify a different tag	g or address in the controller to which
		the message is sent, set	this member to the required value.
		Enter the tag or address	as ASCII characters.
		If the message	Then the remote array is the
		Reads data	Source element
		Writes data	Destination element
.UnconnectedTimeout	DINT	The time out for an unco	onnected message or for making a
		connection. The default	value is 30 seconds.
		If the message is unconr	nected, the ER bit turns on
		if the controller doesn't o	get a response within the
		UnconnectedTimeout tin	ne.
		If the message is connec	cted, the ER bit turns on if the controlle
		doesn't get a response fo	or making the connection within the
		UnconnectedTimeout tin	ne.
.ConnectionRate	DINT	Time out for a connected	d message once it has a connection.
.TimeoutMultiplier	SINT	This time out is for the r	esponse from the other device.
		This time out applies onl	ly after the connection is made.
		The time out = Connection	onRate x TimeoutMultiplier
		The default ConnectionR	Rate is 7.5 seconds.
		The default TimeoutMult	iplier is 0 (which equates to a
		multiplication factor of 4	4).
		The default time out for	connected messages is 30 seconds (7.
		seconds x 4 = 30 second	ts).
		To change the time out,	change the ConnectionRate and leave
		the TimeoutMultiplier at	the default value.

The MSG instruction transfers elements of data. This is a transitional instruction:

- In ladder diagram, toggle the EnableIn from cleared to set each time the instruction executes.
- The size of each element depends on the data types you specify and the type of message command you use.

Where	Description
1	EnableIn is true
	.EN is set
	.EW is set
	connection is opened
2	message is sent
	.ST is set
	.EW is cleared
3	message is done or errored EnableIn is false
	.DN or .ER is set
	.ST is cleared
	connection is closed (if .EN_CC = 0)
	.EN is cleared (because the EnableIn is false)
4	EnableIn is true and .DN or .ER was previously set
	.EN is set
	.EW is set
	connection is opened
	.DN or .ER is cleared
5	message is sent
	.ST is set
	.EW is cleared
6	message is done or errored and EnableIn is still true
	.DN or .ER is set
	.ST is cleared
	connection is closed (if .EN_CC = 0)
7	EnableIn goes false and .DN or .ER is set

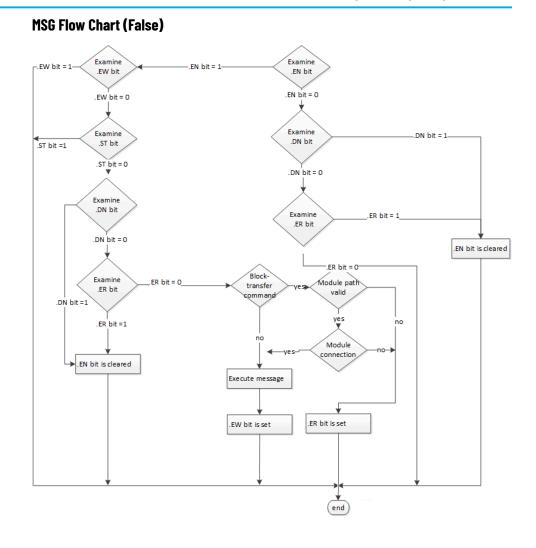
-	Where	Description
		.EN is cleared

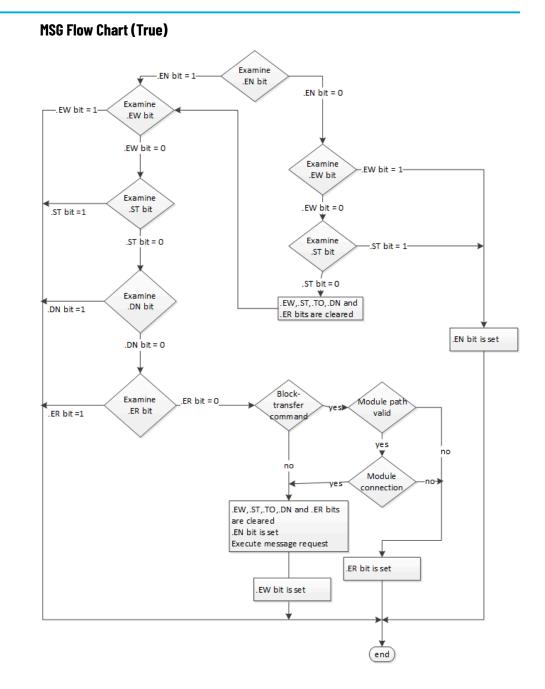
Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Common Attributes for operand-related faults.


Execution


Ladder Diagram

Condition/State	Action Taken
Prescan	The .EWS, .ST, .DN, and .ER bits are cleared.
Rung-condition-in is false	See MSG Flow Chart (False)
Rung-condition-in is true	See MSG Flow Chart (True)
Postscan	N/A

Structured Text

Condition/State	Action Taken
Prescan	See Prescan in the Ladder Diagram table
Normal execution	See MSG Flow Chart (True)
Postscan	See Postscan in the Ladder Diagram table

Example

Ladder Diagram

Structured Text

MSG (MessageControl);

MSG Configuration Examples

The following examples show source and destination tags and elements for different controller combinations.

The table explains the path for MSG instructions originating from a Logix 5000 controller and being written to another controller.

Message Path	Example Source and Destinatio	Example Source and Destination		
Logix 5000 -> Logix 5000	Source tag	array_1[0]		
	Destination tag	array_2[0]		
	,	You can use an alias tag for the source tag in the originating Logix 5000 controller. You cannot use an alias for the destination tag. The destination must be a base tag.		
Logix 5000 -> PLC-5	Source tag	array_1[0]		
Logix 5000 -> SLC	Destination element	N7:10		
	You can use an alias tag for the s	You can use an alias tag for the source tag, in the originating Logix 5000 controller.		
Logix 5000 -> PLC-2	Source tag	array_1[0]		
	Destination element	010		

The table explains the path for MSG instructions originating from a Logix 5000 controller and reading from another controller.

Message Path	Example Source and Destination		
Logix 5000 -> Logix 5000	Source tag	array_1[0]	
	Destination tag	array_2[0]	
	You cannot use an alias tag for the source tag. The source must be a base tag. You can use an alias tag for the destination tag, in the originating Logix 5000 controller.		
Logix 5000 -> PLC-5	Source element	N7:10	
Logix 5000 -> SLC	Destination tag	array_1[0]	
	You can use an alias tag for the destination controller.	can use an alias tag for the destination tag, in the originating Logix 5000 troller.	
Logix 5000 -> PLC-2	Source element	010	
	Destination tag	array_1[0]	

Major fault types and codes

Refer to the Logix 5000 Controller Fault Codes spreadsheet for a complete list of fault codes.

You might be asked to log in to your Rockwell Automation web account or create an account if you do not have one. You do not need a support contract to access the article.

Minor fault types and codes

The following are the minor fault types and codes.

Refer to the Logix 5000 Controller Fault Codes spreadsheet for a complete list of fault codes.

You might be asked to log in to your Rockwell Automation web account or create an account if you do not have one. You do not need a support contract to access the article.

Message Error Codes

Error codes depend on the type of MSG instruction.

Error Codes

The Logix Designer application does not always display the full description.

Error Code (Hex)	Description	Display In Software	
0001	Connection failure (extended error codes)	Same as description	
0002	Insufficient resource		
0003	Invalid value		
0004	IOI syntax error (see extended error codes)		
0005	Destination unknown, class unsupported, instance undefined or structure element undefined (see extended error codes)		
0006	Insufficient packet space		
0007	Connection lost		
0008	Service unsupported		
0009	Error in data segment or invalid attribute value		
000A	Attribute list error		
000B	State already exists		
0000	Object model conflict		
000D	Object already exists		
000E	Attribute cannot be set		
000F	Permission denied		
0010	Device state conflict	1	
0011	Reply will not fit	1	
0012	Fragment primitive	1	
0013	Insufficient command data	1	
0014	Attribute not supported	1	
0015	Too much data	1	
001A	Bridge request too large	1	
001B	Bridge response too large	1	

Error Code (Hex)	Description	Display In Software
001C	Attribute list shortage	
001D	Invalid attribute list	Same as description
001E	Embedded service error	
001F	Connection related failure (see extended error codes)	
0022	Invalid reply received	
0025	Key segment error	
0026	Invalid 101 error	
0027	Unexpected attribute in list	
0028	DeviceNet error - invalid member ID	
0029	DeviceNet error - member not settable	
00D1	Module not in run state	Unknown error
OOFB	Message port not supported	
OOFC	Message unsupported data type	
OOFD	Message uninitialized	
OOFE	Message timeout	
OOFF	General error (see extended error codes)	

Extended Error Codes

The Logix Designer application does not display any text for the extended error codes.

The table lists extended error codes for error code 0001.

Extended Error Code (Hex)	Description
0100	Connection in use
0103	Transport not supported
0106	Ownership conflict
0107	Connection not found
0108	Invalid connection type
0109	Invalid connection size
0110	Module not configured
0111	EPR not supported
0113	MSG write failed
0114	Wrong module
0115	Wrong device type
0116	Wrong revision
0118	Invalid configuration format
011A	Application out of connections

Extended Error Code (Hex)	Description
0203	Connection timeout
0204	Unconnected message timeout
0205	Unconnected send parameter error
0206	Message too large
0301	No buffer memory
0302	Bandwidth not available
0303	No screens available
0305	Signature mismatch
0311	Port not available
0312	Link address not available
0315	Invalid segment type
0317	Connection not scheduled

The table lists the extended error codes for error code 001F.

Extended Error Code (Hex)	Description	
0203	Connection timeout	

The table lists the extended error codes for error code 0004 and 0005.

Extended Error Code (Hex)	Description
0000	extended status out of memory
0001	extended status out of instances

The table lists the extended error codes for error code OOFF.

Extended Error Code (Hex)	Description
2001	Excessive IOI
2002	Bad parameter value
2018	Semaphore reject
201B	Size too small
2010	Invalid size
2100	Privilege failure
2101	Invalid keyswitch position
2102	Password invalid
2103	No password issued
2104	Address out of range
2105	Address and how many out of range
2106	Data in use
2107	Type is invalid or not supported

Extended Error Code (Hex)	Description
2108	Controller in upload or download mode
2109	Attempt to change number of array dimensions
210A	Invalid symbol name
210B	Symbol does not exist
210E	Search failed
210F	Task cannot start
2110	Unable to write
2111	Unable to read
2112	Shared routine not editable
2113	Controller in faulted mode
2114	Run mode inhibited

PLC and SLC Error Codes (.ERR)

Logix firmware revision 10.x and later provides new error codes for errors that are associated with PLC and SLC™ message types (PCCC messages).

This change lets RSLogix 5000 software display a more meaningful description for many of the errors. Previously the software did not give a description for any of the errors associated with the 00F0 error code.

The change also makes the error codes more consistent with errors returned by other controllers, such as PLC-5[®] controllers.

The table shows the change in the error codes from R9.x and earlier to R10.x and later. As a result of the change, the .ERR member returns a unique value for each PCCC error. The .EXERR is no longer required for these errors.

PLC and SLC Error Codes (hex)

R9.x And Earlie	er	R10.x And Late	r	Description	
.ERR	.EXERR	.ERR	.EXERR		
0010		1000		Illegal command or	
				format from local	
				processor	
0020		2000		Communication module	
				not working	
0030		3000		Remote node is missing,	
				disconnected, or shut	
				down	
0040		4000		Processor connected	
				but faulted (hardware)	
0050		5000		Wrong station number	

R9.x And Earlier		R10.x And Later	Description
0060		6000	Requested function is
			not available
0070		7000	Processor is in Program
			mode
0080		8000	Compatibility file of
			processor does not exis
0090		9000	Remote node cannot
			buffer command
00B0		B000	Processor is
			downloading so it is no
			accessible
00F0	0001	F001	Processor incorrectly
			converted the address
00F0	0002	F002	Incomplete address
00F0	0003	F003	Incorrect address
00F0	0004	F004	lllegal address format -
			symbol not found
00F0	0005	F005	lllegal address format -
			symbol has 0 or greate
			than the maximum
			number of characters
			supported by the device
00F0	0006	F006	Address file does not
			exist in target processo
00F0	0007	F007	Destination file is too
			small for the number o
			words requested
00F0	8000	F008	Cannot complete
			request
			Situation changed
			during multipacket
			operation
00F0	0009	F009	Data or file is too large
			Memory unavailable
00F0	A000	FOOA	Target processor
			cannot put requested
			information in packets
00F0	000B	FOOB	Privilege error; access
			denied
00F0	000C	FOOC	Requested function is
			not available

Chapter 4 Input/Output Instructions

R9.x And Earlier	r	R10.x And Later	Description
00F0	000D	FOOD	Request is redundant
00F0	000E	FOOE	Command cannot be
			executed
00F0	000F	FOOF	Overflow; histogram
			overflow
00F0	0010	F010	No access
00F0	0011	F011	Data type requested
			does not match data av
			ilable
00F0	0012	F012	Incorrect command
			parameters
00F0	0013	F013	Address reference
			exists to deleted area
00F0	0014	F014	Command execution
			failure for unknown
			reason
			PLC-3® histogram
			overflow
00F0	0015	F015	Data conversion error
00F0	0016	F016	The scanner is
			not available to
			communicate with a 17
			rack adapter
00F0	0017	F017	The adapter is
			no available to
			communicate with the
			module
00F0	0018	F018	The 1771 module
			response was not valid
00F0	0019	F019	Duplicate label
00F0	001A	F01A	File owner active - the
			file is being used
00F0	001B	F01B	Program owner active -
			someone is downloadin
			or editing online
00F0	001C	F01C	Disk file is write
			protected or otherwise
			not accessible (offline
			only)
00F0	001D	F01D	Disk file is being used b
			another application

R9.x And Earlier

R10.x And Later

Description

Update not performed

(offline only)

Block Transfer Error Codes

These are the Logix5000 block-transfer specific error codes.

Error Code (Hex)	Description	Display In Software
00D0	The scanner did not receive a	Unknown error
	block-transfer response from the	
	block-transfer module within 3.5 seconds	
	of the request.	
00D1	The checksum from the read response	
	did not match the checksum of the data	
	stream.	
00D2	The scanner requested either a read	
	or write but the block-transfer module	
	responded with the opposite.	
00D3	The scanner requested a length and the	
	block-transfer module responded with a	
	different length.	
00D6	The scanner received a response from	
	the block-transfer module indicating the	
	write request failed.	
OOEA	The scanner was not configured to	
	communicate with the rack that would	
	contain this block-transfer module.	
OOEB	The logical slot specified is not available	
	for the given rack size.	
OOEC	There is currently a block-transfer	
	request in progress and a response is	
	required before another request can	
	begin.	
OOED	The size of the block-transfer request is	
	not consistent with valid block-transfer	
	size requests.	
00EE	The type of block-transfer request is not	
	consistent with the expected BT_READ or	
	BT_WRITE.	
OOEF	The scanner was unable to find an	
	available slot in the block-transfer table	

Error Code (Hex)	Description	Display In Software
	to accommodate the block-transfer	
	request.	
00F0	The scanner received a request to reset	
	the remote I/O channels while there were	
	outstanding block-transfers.	
00F3	Queues for remote block-transfers are	
	full.	
00F5	No communication channels are	
	configured for the requested rack or slot.	
00F6	No communication channels are	
	configured for remote I/O.	
00F7	The block-transfer timeout, set in the	
	instruction, timed out before completion.	
00F8	Error in block-transfer protocol -	
	unsolicited block-transfer.	
00F9	Block-transfer data was lost due to a bad	
	communication channel.	
OOFA	The block-transfer module requested	
	a different length than the associated	
	block-transfer instruction.	
OOFB	The checksum of the block-transfer read	
	data was wrong.	
OOFC	There was an invalid transfer of	
	block-transfer write data between the	
	adapter and the block-transfer module.	
OOFD	The size of the block-transfer plus the	1
	size of the index in the block-transfer	
	data table was greater than the size of	
	the block-transfer data table file.	

Specify the Communication Details

Set up a broadcast in ladder logic or structured text programs. In ladder logic, add a rung and click on the **MSG** property to access the **Message Configuration** dialog box and set up a new message. In structured text, type **MSG** (aMsg) and then right-click the aMsg to open the **Message Configuration** dialog box and configure the message.

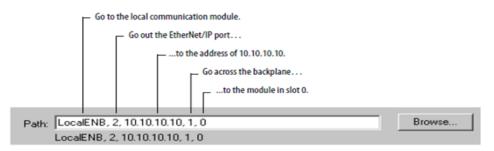
NOTE: Logix Designer versions 37 and later do not support controllers with serial ports. The **Broadcast** button appears only in Logix Designer versions 36 and earlier for controllers with a serial port.

To configure a MSG instruction, specify the following on the **Communication** tab:

Message Configuration - msg	
	<u>Specify a Path</u>
Broadcast:	Broadcast Button
Communication Method	Specify a Communication Method or Module Address
Connected Cache Connections	Choose a Cache Option

Specify a Path

The path shows the route that the message takes to get to the destination. It uses names from the I/O configuration of the controller, numbers that you type, or both. You can default the path by using the broadcast button, which must be enabled with the system protocol and message type.


lf	Then
The I/O configuration of the controller has the module that gets the message.	Browse to select the module.
The I/O configuration of the controller has only the local communication module.	Browse to select the local communication module and type the rest of the path.
The I/O configuration of the controller does not have any of the modules required for the message.	Type the path.

Tip: Also supported is THIS, which indicates a path to self. THIS is used to send an unconnected message to the controller.

Examples

The I/O configuration of the controller has only the local communication module:

To type a path, use the format:

port, next_address, port, next_address,

Where	ls			
Where	For this network	Туре		
Port	Backplane	1		
	DF1 (serial, serial channel 0)	2		
	ControlNet			
	EtherNet/IP			
	DH+ channel A			
	DH+ channel B	3		
	DF1 channel 1 (serial channel 1)			
Next_address	Backplane	Slot number of the module		
	DF1 (serial)	Station address (0-254)		
	ControlNet	Node number (1-99 decimal)		
	DH+	8# followed by the node number (1-77		
		octal)		
		For example, to specify the octal node		
		address of 37, type 8#37.		
	EtherNet/IP	Specify a module on an EtherNet/IP		
		network by using any of these formats:		
		• IP address. For example, 10.10.10.10		
		• IP address:Port. For example,		
		10.10.10.10:24		
		• DNS name. For example, tanks		
		• DNS name:Port. For example,		
		tanks:24		

Broadcast Button

The **Broadcast** button is used with the serial port.

• This functionality for RSLogix 5000 software, beginning with version 18, enhances the ability to define the route and message type that are required to send a message to its destination.

The **Broadcast** button, when enabled, allows you to default the path by selecting an available channel(s) in a combo box. The number of channels listed in the combo box depends on the current controller.

By default, the **Path** button on the **Communication** tab is active.

Perform these steps to enable the Broadcast button and select a channel to default a path for the message.

- On the Controller Organizer, right-click Controller, and select Properties. The Controller Properties dialog box appears.
- 2. Click the System Protocol tab.
- Select DF1 Master in the Protocol box. The Polling mode defaults 'Message Based' (slave can initiate messages).
- 4. Click OK.

- In ladder logic, click the box inside the MSG tag. The Message Configuration dialog box appears with the Configuration tab open.
- 6. In the Message Type box, select CIP Data Table Write.
- 7. Click OK. You have enabled the Broadcast button on the Communication tab.
- 8. Click the Communication tab.
- Next to the **Broadcast** button, select a channel in the combo box. The number of channels in the combo box depends on the controller.

When you select channel 0 or 1, the corresponding message path on the **Message Configuration** dialog box defaults to 2,255 (channel 0) or 3,255 (channel 1). The Path grays out to not allow you to manually enter a path value.

10. Click **OK**.

System Protocol Tab Configuration

NOTE: Logix Designer versions 37 and later do not support controllers with serial ports. The **System Protocol** tab appears only in Logix Designer versions 36 and earlier for controllers with a serial port.

To run broadcast in ControlLogix controllers in the Logix Designer application, you must configure the **System Protocol** tab in the **Controller Properties** dialog box. The protocol must be compatible with the message type of write' on the **Message Configuration** dialog box.

Follow these steps to set up the system protocol to be compatible with the broadcast feature.

- 1. Create or open an existing controller in the application.
- On the Controller Organizer, right-click the controller name, and select Properties. The Controller Properties dialog box appears.
- 3. If you controller has a serial port, click System Protocol tab.

General Serial Port System Protocol* User Protocol Major Faults Minor Faults Protocol: DF1 Master Image: Constraint of Point Definit	Date/Time	Advanced _	SFC Execution	Project	Capacity	Security	Alarm Log
Protocol: DF1 Master Station Address: DF1 Master DF1 Point to Point DF1 Point to Point DF1 Station Address: DF1 Station Address: DF1 Point to Point DF1 Station Address: DF1 Station Address: DF1 Station Address Reply Message Wait: 5 \$ (x20 ms) Polling Mode: Message Based (slave can initiate messages) Master Transmit: Between station polls Normal Poll Node Tag: Normal Poll Group Size: Priority Poll Node Tag:	General S	erial Port	System Protocol*	User Prot	tocol Ma	ajor Faults	Minor Faults
Master Transmit: Between station polls Normal Poll Node Tag: Priority Poll Node Tag:	Station Address: Transmit Retries: ACK Timeout:	DF1 Maste DF1 Point DF1 Radio DF1 Slave DH485	er to Point Modem	I BCC			
Normal Poll Node Tag: Normal Poll Group Size:	Polling Mode:	Message	Based (slave can initiate	messages)	•		
Priority Poll Node Tag:	Master Transmit:	Between s	tation polls 🔻				
	Normal Poll Node Tay	g:	- Norm	al Poll Group Si:	ze: 0		
Active Station Tag:	Priority Poll Node Tag	3:					
	Active Station Tag:						

4. In the Protocol box, select a protocol.

IMPORTANT: The **Message Type** box on the **Message Configuration Tab** dialog box must be write-typed to be compatible with the system protocol. Otherwise, the **Broadcast** button is disabled.

5. Enter the information on the **System Protocol** tab for each protocol outlined in the following tables.

Торіс	Description
Protocol	DF-1 Master
Station Address	Type controller station address number
Transmit Retries	3
ACK Timeout	50
Reply Message Wait	5
Polling Mode	Select from the following modes:
	• Message Based Poll the slave using message
	instruction
	• Slave can initiate message for slave to slave
	broadcast
	\circ $$ $$ Standard. to have the schedule poll for the slave
Error Detection	BCC
Duplicate Detection	Enabled (checked)
Торіс	Description
Protocol	DF-1 Slave
Station Address	Type controller station address number
Transmit Retries	3
Slave Poll Timeout	3000
EOT Suppression	Disable (unchecked)
Error Detection	BCC
Duplicate Detection	Enabled (checked)
Торіс	Description
Protocol	DF-1 Slave
Station Address	Type controller station address number
Enable Store and Forward	Enable box (checkmark) to use store and forward tag

6. Click OK.

For Block Transfers

For block transfer messages, add the following modules to the I/O configuration of the controller:

For block-transfers over this network:	Add these modules to the I/O configuration:
ControlNet	Local communication module (for example, 1756-CNB module)
	Remote adapter module (for example, 1771-ACN module)
Universal remote I/O	Local communication module (for example, 1756-DHRIO module)
	One remote adapter module (for example, 1771-ASB module) for
	each rack, or portion of a rack, in the chassis
	Block-transfer module (optional)

Specify a Communication Method or Module Address

If the destination device is Select		And specify		
Logix 5000 controller	CIP	No other specifications required	l.	
PLC-5 controller over an EtherNet/IP network				
PLC-5 controller over a ControlNet network				
SLC 5/05 controller				
PLC-5 controller over a DH+ network	DH+	Channel	Channel A or B of the 1756-DHRIO module that is connected to the DH+ network.	
SLC controller over a DH+ network		Source Link	Link ID assigned to the backplane of the controller in the routing table of the 1756-DHRIO module. The source node in the routing table is automatically the slot number of the controller.	
PLC-3 processor		Destination Link	Link ID of the remote DH+ link where the target device resides.	
PLC-2 processor		Destination Node	Station address of the target device, in octal.	
		If there is only one DH+ link and Classic software to configure th links, specify 0 for both the Sou Link.	e DH/RIO module for remote	
Application on a workstation that is receiving an unsolicited message routed over an EtherNet/IP or ControlNet network through RSLinx	CIP with Source ID This lets the application receive data from a controller.	Source Link	Remote ID of the topic in RSLinx Classic software, or the shortcut in FactoryTalk Linx.	

Use the following table to select a communication method or module address for the message:

If the destination device is	Select	And specify		
Classic or FactoryTalk Linx software		Destination Link	Virtual Link ID set up in RSLinx Classic or FactoryTalk Linx software (065535).	
		Destination Node	Destination ID (077 octal) provided by the application to RSLinx Classic or FactoryTalk Linx. For a DDE topic in RSLinx Classic , use 77.	
		The slot number of the ControlLo Source Node.	ogix controller is used as the	
Block transfer module over a universal remote I/O network	RIO	Channel	Channel A or B of the 1756-DHRIO module that is connected to the RIO network.	
		Rack	Rack number (octal) of the module.	
		Group	Group number of the module.	
		Slot	Slot number of the module.	
Block transfer module over a ControlNet network	ControlNet	Slot	Slot number of the module.	

Choose a Cache Option

Depending on the configuration of an MSG instruction, it may use a connection to send or receive data.

Message type:	Communication method:	Uses a connection:
CIP data table read or write		Your option(1)
PLC-2, PLC-3, PLC-5, or SLC (all types)	CIP	
	CIP with Source ID	
	DH+	Х
CIP generic		Your option(2)
Block-transfer read or write		Х

- CIP data table read or write messages can be connected or unconnected. For most applications, Rockwell
 Automation recommends that you leave CIP data table read or write messages connected.
- 2. CIP generic messages can be connected or unconnected. But, for most applications, we recommend you leave CIP generic messages unconnected.

If a MSG instruction uses a connection, you have the option to leave the connection open (cache) or close the connection when the message is done transmitting.

lf you:	Then:
Cache the connection	The connection stays open after the MSG instruction is done. This optimizes execution time. Opening a connection each time the message executes increases execution time.
Do not cache the connection	The connection closes after the MSG instruction is done. This frees up that connection for other uses.

The controller has the following limits on the number of connections that you can cache.

If you have this controller:	Then you can cache:
CompactLogix 5370 or ControlLogix 5570	Up to 32 connections.
ControlLogix 5580	Up to 256 connections.

If several messages go to the same device, the messages may be able to share a connection.

If the MSG instructions are to:	And they are:	Then:	
Different devices		Each MSG instruction uses 1 connection.	
Same device	Enabled at the same time	Each MSG instruction uses 1 connection.	
	NOT enabled at the same time	The MSG instruction uses 1 connection	
		and 1 cached buffer. They share the	
		connection and the buffer.	

Tip: To share a connection, if the controller alternates between sending a block-transfer read message and a block-transfer write message to the same module, both messages count as one connection. Caching both messages counts as one on the cache list.

Guidelines

As you plan and program your MSG instructions, follow these guidelines:

Guideline	Details	
For each MSG instruction, create a control tag.	Each MSG instruction requires its own control tag.	
	Data type = MESSAGE	
	Scope = controller	
	The tag cannot be part of an array or a user-defined data type.	
Keep the source and/or destination data at the controller scope.	e. A MSG instruction can access only tags that are in the Control	
	Tags folder (controller scope).	
If your MSG is to a device that uses 16-bit integers, use a buffer	If your message is to a device that uses 16-bit integers, such as	
of INTs in the MSG and DINTs throughout the project.	a PLC-5 or SLC 500 controller, and it transfers integers	
	(not REALs), use a buffer of INTs in the message and DINTs	
	throughout the project.	

Guideline	Details
	This increases the efficiency of your project because Logix controllers execute more efficiently and use less memory when working with 32-bit integers (DINTs). To convert between INTs and DINTs, see the Logix 5000 Controllers Common Procedures Programming Manual, publication 1756-PM001.
Cache the connected MSGs that execute most frequently.	Cache the connection for those MSG instructions that execute most frequently, up to the maximum number permissible for your controller revision. This optimizes execution time because the controller does not have to open a connection each time the message executes.
For the CompactLogix 5370 or ControlLogix 5570 controllers , if you want to enable more than 16 MSGs at one time, use some type of management strategy. For the ControlLogix 5580 controllers, if you want to enable more than 256 MSGs at one time, use some type of management strategy.	For the CompactLogix 5370 or ControlLogix 5570 controllers, if you enable more than 16 MSGs at one time, some MSG instructions may experience delays in entering the queue. For the ControlLogix 5580 controllers, if you enable more than 256 MSGs at one time, some MSG instructions may experience delays in entering the queue. To help make sure that each message executes, use one of these options: Enable each message in sequence. Enable the messages in groups. Program a message to communicate with multiple devices. For more information, see the Logix 5000 Controllers Common Procedures Programming Manual, publication 1756-PM001. Program logic to coordinate the execution of messages. For more information, see the Logix 5000 Controllers Common Procedures Programming Manual, publication 1756-PM001.
(For the CompactLogix 5370 or ControlLogix 5570 controllers only) Keep the number of unconnected and uncached MSGs less than the number of unconnected buffers.	The controller can have 1040 unconnected buffers. The default number is 10 for the CompactLogix 5370 or ControlLogi 5570 controllers. If all the unconnected buffers are in use when an instruction leaves the message queue, the instruction errors and does not transfer the data. You can increase the number of unconnected buffers (40 max) but continue to follow guideline 5. To increase the number of unconnected buffers, see the Logix 5000 Controllers Common Procedures Programming Manual, publication 1756-PM001.

Specify SLC Messages

Use the SLC message types to communicate with SLC and MicroLogix controllers. The following table specifies which data types the instruction allows you access. The table also shows the corresponding Logix 5000 data type.

For this SLC or MicroLogix data type:	Use this Logix 5000 data type:
F	REAL
L (MicroLogix 1200 and 1500 controllers)	DINT
N	INT

Specify Block Transfer Messages

The block-transfer message types are used to communicate with block-transfer modules over a Universal Remote I/O network.

To:	Select this command:
Read data from a block-transfer module	Block-Transfer Read
This message type replaces the BTR instruction	
Write data to a block-transfer module	Block-Transfer Write
This message type replaces the BTW instruction	

To configure a block-transfer message, follow these guidelines:

- The source (for BTW) and destination (for BTR) tags must be large enough to accept the requested data, except for MESSAGE, AXIS, and MODULE structures.
- Specify how many 16-bit integers (INT) to send or receive. You can specify from 0 to 64 integers.

Tip: To have the block-transfer module determine how many 16-bit integers to send (BTR), or to have the controller send 64 integers (BTW), type **0** for the number of elements.

Get System Value (GSV) and Set System Value (SSV)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

he GSV/SSV instructions get and set controller system data that is stored in objects.

IMPORTANT: The SSV attributes must be uploaded to be saved to the project.

Available Languages

Ladder Diagram

GSV	
Get System Value	
Class Name	?
Instance Name	?
Attribute Name	?
Dest	?
	??

SSV	
Set System Value	
Class Name	?
Instance Name	?
Attribute Name	?
Source	?
	??

Function Block

These instructions are not available in function block.

Structured Text

GSV(ClassName,InstanceName,AttributeName,Dest)

SSV(ClassName,InstanceName,AttributeName,Source)

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Ladder Diagram and Structured Text

Operand	Туре	Format	Description
Class name		name	The name of object class
Instance name		name	The name of specific object, when object requires name
Attribute name		name	The attribute of object The data type depends on the attribute you select
Destination (GSV)	SINT INT DINT REAL structure TIME32 TIME DT LDT	tag	The destination for attribute data

Chapter 4 Input/Output Instructions

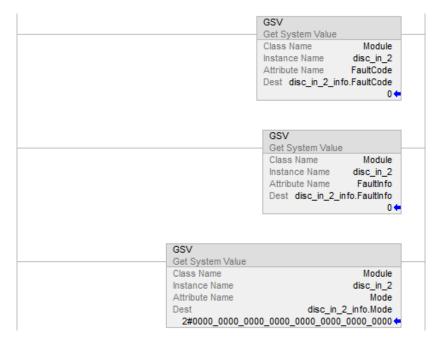
Operand	Туре	Format	Description
Source (SSV)	SINT	tag	The tag that contains data you
	INT		want to copy to the attribute
	DINT		
	REAL		
	structure		
	TIME32		
	TIME		
	LTIME		
	DT		
	LDT		

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

Tip: When you use the GSV Instruction with the WallClock class and the CSTOffset attribute with the TIME32 data type, you must create the TIME32 data type tag a TIME32[2] array tag.

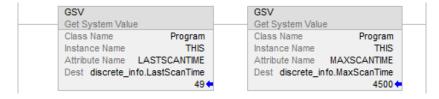
Description

The GSV/SSV instructions get and set controller status data that is stored in objects. The controller stores status data in objects. There is no status file, as in the PLC-5 processor.


When true, the GSV instruction retrieves the specified information and places it in the destination. When true, the SSV instruction sets the specified attribute with data from the source.

When you enter a GSV/SSV instruction, the programming software displays the valid object classes, object names, and attribute names for each instruction. For the GSV instruction, you can get values for all the attributes. For the SSV instruction, the software displays only those attributes you can set (SSV). **NOTE: CAUTION:** Use the SSV instructions carefully. Making changes to objects can cause unexpected controller operation or injury to personnel.

You must test and confirm that the instructions do not change data that you do not want to change.


The SSV instructions write and the GSV instructions read past a member into other members of a tag. If the tag is too small, the instructions do not write or read the data. They log a minor fault instead.

Example 1

Member_A is too small for the attribute. So the GSV instruction writes the last value to Member_B.

Example 2

My_Tag is too small for the attribute. So the GSV instruction stops and logs a minor fault. The Destination tag remains unchanged.

GSV/SSV Objects define each object's attributes and their associated data types. For example, the MajorFaultRecord attribute of the Program object requires a DINT[11] data type.

Affects Math Status Flags

No.

Major/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
There is an invalid object address	4	5
The specified object that does not support GSV/SSV	4	6
There is an invalid attribute	4	6
There was not enough information supplied for an SSV instruction	4	6
The GSV destination was not large enough to hold the requested data	4	7

See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action Taken
Prescan	See Prescan in the Ladder Diagrams table.
Normal Execution	See rung-condition-in is true in the Ladder Diagrams table.
Postscan	See Postscan in the Ladder Diagrams table.

Example

Ladder Diagrams

	GSV
	Get System Value
	Class Name Controller
	Attribute Name Name
	Dest dest0
	'InputOutput Test'
SSV Set S	System Value
Set S	· · · -
Set S Class	iystem Value
Set S Class Insta	system Value Name Program

Structured Text

GSV (Program, THIS, LASTSCANTIME, dest1);

SSV (Program, THIS, MinorFaultRecord, src[0]);

Get System Value (GSV) and Set System Value (SSV)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

he GSV/SSV instructions get and set controller system data that is stored in objects.

IMPORTANT: The SSV attributes must be uploaded to be saved to the project.

Available Languages

Ladder Diagram

GSV	
Get System Value	-
Class Name	?
Instance Name	?
Attribute Name	?
Dest	?
	??

SSV	
Set System Value	
Class Name	?
Instance Name	?
Attribute Name	?
Source	?
	??

Function Block

These instructions are not available in function block.

Structured Text

GSV(ClassName,InstanceName,AttributeName,Dest)

SSV(ClassName,InstanceName,AttributeName,Source)

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Ladder Diagram and Structured Text

Operand	Туре	Format	Description
Class name		name	The name of object class
Instance name		name	The name of specific object, when object requires name
Attribute name		name	The attribute of object The data type depends on the attribute you select
Destination (GSV)	SINT	tag	The destination for attribute
	INT		data
	DINT		
	REAL		
	structure		
	TIME32		
	TIME		
	DT		
	LDT		
Source (SSV)	SINT	tag	The tag that contains data yo
	INT		want to copy to the attribute
	DINT		
	REAL		
	structure		
	TIME32		
	TIME		
	LTIME		
	DT		
	LDT		

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

Tip: When you use the GSV Instruction with the WallClock class and the CSTOffset attribute with the TIME32 data type, you must create the TIME32 data type tag a TIME32[2] array tag.

Description

The GSV/SSV instructions get and set controller status data that is stored in objects. The controller stores status data in objects. There is no status file, as in the PLC-5 processor.

When true, the GSV instruction retrieves the specified information and places it in the destination. When true, the SSV instruction sets the specified attribute with data from the source.

When you enter a GSV/SSV instruction, the programming software displays the valid object classes, object names, and attribute names for each instruction. For the GSV instruction, you can get values for all the attributes. For the SSV instruction, the software displays only those attributes you can set (SSV).

NOTE: CAUTION: Use the SSV instructions carefully. Making changes to objects can cause unexpected controller operation or injury to personnel.

You must test and confirm that the instructions do not change data that you do not want to change.

The SSV instructions write and the GSV instructions read past a member into other members of a tag. If the tag is too small, the instructions do not write or read the data. They log a minor fault instead.

Example 1

	GSV Get System Value
	Class Name Module Instance Name disc_in_2 Attribute Name FaultCode Dest disc_in_2_info.FaultCode 0
	GSV Get System Value
	Class Name Module Instance Name disc_in_2 Attribute Name FaultInfo Dest disc_in_2_info.FaultInfo 0
GSV Get System Value	
Class Name Instance Name Attribute Name Dest	Module disc_in_2 Mode disc_in_2_info.Mode
2#0000_0000_000	0_0000_0000_0000_0000 +

Member_A is too small for the attribute. So the GSV instruction writes the last value to Member_B.

Example 2

My_Tag is too small for the attribute. So the GSV instruction stops and logs a minor fault. The Destination tag remains unchanged.

GSV/SSV Objects define each object's attributes and their associated data types. For example, the MajorFaultRecord attribute of the Program object requires a DINT[11] data type.

Affects Math Status Flags

No.

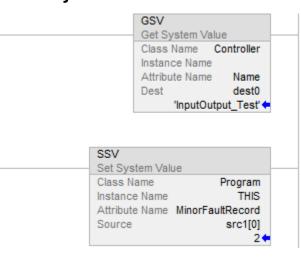
Major/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
There is an invalid object address	4	5
The specified object that does not support GSV/SSV	4	6
There is an invalid attribute	4	6
There was not enough information supplied for an SSV instruction	4	6
The GSV destination was not large enough to hold the requested data	4	7

See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram


Condition	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action Taken
Prescan	See Prescan in the Ladder Diagrams table.
Normal Execution	See rung-condition-in is true in the Ladder Diagrams table.
Postscan	See Postscan in the Ladder Diagrams table.

Example

Ladder Diagrams

Structured Text

GSV (Program, THIS, LASTSCANTIME, dest1);

SSV (Program, THIS, MinorFaultRecord, src[0]);

Get System Value (GSV) and Set System Value (SSV)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

he GSV/SSV instructions get and set controller system data that is stored in objects.

IMPORTANT: The SSV attributes must be uploaded to be saved to the project.

Available Languages

Ladder Diagram

GSV	
Get System Value	-
Class Name	?
Instance Name	?
Attribute Name	?
Dest	?
	??

SSV	
Set System Value	
Class Name	?
Instance Name	?
Attribute Name	?
Source	?
	??

Function Block

These instructions are not available in function block.

Structured Text

GSV(ClassName,InstanceName,AttributeName,Dest)

SSV(ClassName,InstanceName,AttributeName,Source)

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Ladder Diagram and Structured Text

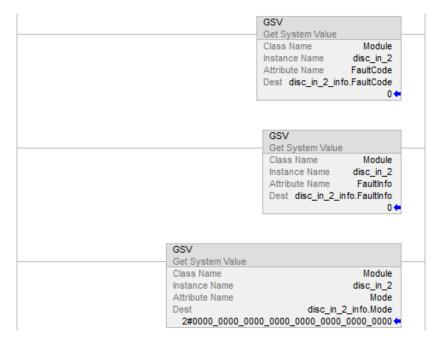
Operand	Туре	Format	Description
Class name		name	The name of object class
Instance name		name	The name of specific object, when object requires name
Attribute name		name	The attribute of object The data type depends on the attribute you select
Destination (GSV)	SINT INT DINT REAL structure TIME32 TIME DT LDT	tag	The destination for attribute data
Source (SSV)	SINT INT DINT REAL structure TIME32 TIME LTIME DT LDT	tag	The tag that contains data you want to copy to the attribute

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

Tip: When you use the GSV Instruction with the WallClock class and the CSTOffset attribute with the TIME32 data type, you must create the TIME32 data type tag a TIME32[2] array tag.

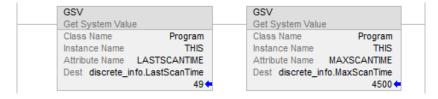
Description

The GSV/SSV instructions get and set controller status data that is stored in objects. The controller stores status data in objects. There is no status file, as in the PLC-5 processor.


When true, the GSV instruction retrieves the specified information and places it in the destination. When true, the SSV instruction sets the specified attribute with data from the source.

When you enter a GSV/SSV instruction, the programming software displays the valid object classes, object names, and attribute names for each instruction. For the GSV instruction, you can get values for all the attributes. For the SSV instruction, the software displays only those attributes you can set (SSV). **NOTE: CAUTION:** Use the SSV instructions carefully. Making changes to objects can cause unexpected controller operation or injury to personnel.

You must test and confirm that the instructions do not change data that you do not want to change.


The SSV instructions write and the GSV instructions read past a member into other members of a tag. If the tag is too small, the instructions do not write or read the data. They log a minor fault instead.

Example 1

Member_A is too small for the attribute. So the GSV instruction writes the last value to Member_B.

Example 2

My_Tag is too small for the attribute. So the GSV instruction stops and logs a minor fault. The Destination tag remains unchanged.

GSV/SSV Objects define each object's attributes and their associated data types. For example, the MajorFaultRecord attribute of the Program object requires a DINT[11] data type.

Affects Math Status Flags

No.

Major/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
There is an invalid object address	4	5
The specified object that does not support GSV/SSV	4	6
There is an invalid attribute	4	6
There was not enough information supplied for an SSV instruction	4	6
The GSV destination was not large enough to hold the requested data	4	7

See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action Taken
Prescan	See Prescan in the Ladder Diagrams table.
Normal Execution	See rung-condition-in is true in the Ladder Diagrams table.
Postscan	See Postscan in the Ladder Diagrams table.

Example

Ladder Diagrams

 GSV Get System Value Class Name Controller Instance Name Attribute Name Name
Dest dest0
'InputOutput_Test' <
tem Value
 ame Program

Structured Text

GSV (Program, THIS, LASTSCANTIME, dest1);

SSV (Program, THIS, MinorFaultRecord, src[0]);

Get System Value (GSV) and Set System Value (SSV)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

he GSV/SSV instructions get and set controller system data that is stored in objects.

IMPORTANT: The SSV attributes must be uploaded to be saved to the project.

Available Languages

Ladder Diagram

GSV	
Get System Value	-
Class Name	?
Instance Name	?
Attribute Name	?
Dest	?
	??

SSV	
Set System Value	
Class Name	?
Instance Name	?
Attribute Name	?
Source	?
	??

Function Block

These instructions are not available in function block.

Structured Text

GSV(ClassName,InstanceName,AttributeName,Dest)

SSV(ClassName,InstanceName,AttributeName,Source)

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Ladder Diagram and Structured Text

Operand	Туре	Format	Description
Class name		name	The name of object class
Instance name		name	The name of specific object, when object requires name
Attribute name		name	The attribute of object The data type depends on the attribute you select
Destination (GSV)	SINT INT DINT REAL structure TIME32 TIME DT LDT	tag	The destination for attribute data
Source (SSV)	SINT INT DINT REAL structure TIME32 TIME LTIME DT LDT	tag	The tag that contains data you want to copy to the attribute

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

Tip: When you use the GSV Instruction with the WallClock class and the CSTOffset attribute with the TIME32 data type, you must create the TIME32 data type tag a TIME32[2] array tag.

Description

The GSV/SSV instructions get and set controller status data that is stored in objects. The controller stores status data in objects. There is no status file, as in the PLC-5 processor.

When true, the GSV instruction retrieves the specified information and places it in the destination. When true, the SSV instruction sets the specified attribute with data from the source.

When you enter a GSV/SSV instruction, the programming software displays the valid object classes, object names, and attribute names for each instruction. For the GSV instruction, you can get values for all the attributes. For the SSV instruction, the software displays only those attributes you can set (SSV).

NOTE: CAUTION: Use the SSV instructions carefully. Making changes to objects can cause unexpected controller operation or injury to personnel.

You must test and confirm that the instructions do not change data that you do not want to change.

The SSV instructions write and the GSV instructions read past a member into other members of a tag. If the tag is too small, the instructions do not write or read the data. They log a minor fault instead.

Example 1

	GSV Get System Value
	Class Name Module Instance Name disc_in_2 Attribute Name FaultCode Dest disc_in_2_info.FaultCode 0
	GSV Get System Value
	Class Name Module Instance Name disc_in_2 Attribute Name FaultInfo Dest disc_in_2_info.FaultInfo 0
GSV Get System Value	
Class Name Instance Name Attribute Name Dest	Module disc_in_2 Mode disc_in_2_info.Mode
	00_0000_0000_0000_0000 +

Member_A is too small for the attribute. So the GSV instruction writes the last value to Member_B.

Example 2

My_Tag is too small for the attribute. So the GSV instruction stops and logs a minor fault. The Destination tag remains unchanged.

GSV/SSV Objects define each object's attributes and their associated data types. For example, the MajorFaultRecord attribute of the Program object requires a DINT[11] data type.

Affects Math Status Flags

No.

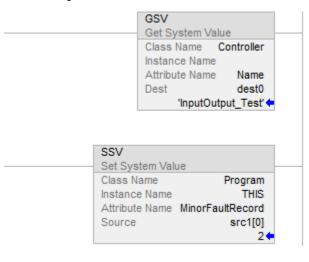
Major/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
There is an invalid object address	4	5
The specified object that does not support GSV/SSV	4	6
There is an invalid attribute	4	6
There was not enough information supplied for an SSV instruction	4	6
The GSV destination was not large enough to hold the requested data	4	7

See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram


Condition	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action Taken	
Prescan	See Prescan in the Ladder Diagrams table.	
Normal Execution	See rung-condition-in is true in the Ladder Diagrams table.	
Postscan	See Postscan in the Ladder Diagrams table.	

Example

Ladder Diagrams

Structured Text

GSV (Program, THIS, LASTSCANTIME, dest1);

SSV (Program, THIS, MinorFaultRecord, src[0]);

Get System Value (GSV) and Set System Value (SSV)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

he GSV/SSV instructions get and set controller system data that is stored in objects.

IMPORTANT: The SSV attributes must be uploaded to be saved to the project.

Available Languages

Ladder Diagram

GSV	
Get System Value	
Class Name	?
Instance Name	?
Attribute Name	?
Dest	?
	??

SSV	
Set System Value	
Class Name	?
Instance Name	?
Attribute Name	?
Source	?
	??

Function Block

These instructions are not available in function block.

Structured Text

GSV(ClassName,InstanceName,AttributeName,Dest)

SSV(ClassName,InstanceName,AttributeName,Source)

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Ladder Diagram and Structured Text

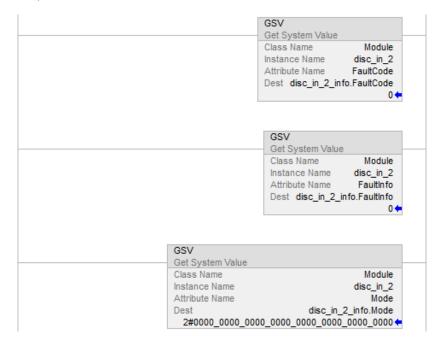
Operand	Туре	Format	Description
Class name		name	The name of object class
Instance name		name	The name of specific object, when object requires name
Attribute name		name	The attribute of object The data type depends on the attribute you select
Destination (GSV)	SINT INT DINT REAL structure TIME32 TIME DT LDT	tag	The destination for attribute data
Source (SSV)	SINT INT DINT REAL structure TIME32 TIME LTIME DT LDT	tag	The tag that contains data you want to copy to the attribute

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

Tip: When you use the GSV Instruction with the WallClock class and the CSTOffset attribute with the TIME32 data type, you must create the TIME32 data type tag a TIME32[2] array tag.

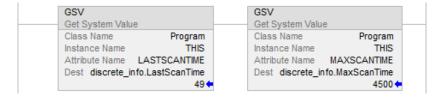
Description

The GSV/SSV instructions get and set controller status data that is stored in objects. The controller stores status data in objects. There is no status file, as in the PLC-5 processor.


When true, the GSV instruction retrieves the specified information and places it in the destination. When true, the SSV instruction sets the specified attribute with data from the source.

When you enter a GSV/SSV instruction, the programming software displays the valid object classes, object names, and attribute names for each instruction. For the GSV instruction, you can get values for all the attributes. For the SSV instruction, the software displays only those attributes you can set (SSV). **NOTE: CAUTION:** Use the SSV instructions carefully. Making changes to objects can cause unexpected controller operation or injury to personnel.

You must test and confirm that the instructions do not change data that you do not want to change.


The SSV instructions write and the GSV instructions read past a member into other members of a tag. If the tag is too small, the instructions do not write or read the data. They log a minor fault instead.

Example 1

Member_A is too small for the attribute. So the GSV instruction writes the last value to Member_B.

Example 2

My_Tag is too small for the attribute. So the GSV instruction stops and logs a minor fault. The Destination tag remains unchanged.

GSV/SSV Objects define each object's attributes and their associated data types. For example, the MajorFaultRecord attribute of the Program object requires a DINT[11] data type.

Affects Math Status Flags

No.

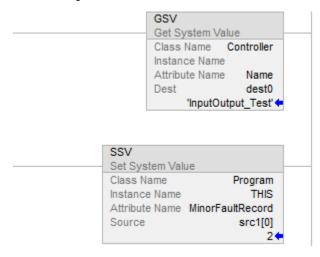
Major/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
There is an invalid object address	4	5
The specified object that does not support GSV/SSV	4	6
There is an invalid attribute	4	6
There was not enough information supplied for an SSV instruction	4	6
The GSV destination was not large enough to hold the requested data	4	7

See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram


Condition	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action Taken	
Prescan	See Prescan in the Ladder Diagrams table.	
Normal Execution	See rung-condition-in is true in the Ladder Diagrams table.	
Postscan	See Postscan in the Ladder Diagrams table.	

Example

Ladder Diagrams

Structured Text

GSV (Program, THIS, LASTSCANTIME, dest1);

SSV (Program, THIS, MinorFaultRecord, src[0]);

Get System Value (GSV) and Set System Value (SSV)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

he GSV/SSV instructions get and set controller system data that is stored in objects.

IMPORTANT: The SSV attributes must be uploaded to be saved to the project.

Available Languages

Ladder Diagram

GSV	
Get System Value	-
Class Name	?
Instance Name	?
Attribute Name	?
Dest	?
	??

SSV	
Set System Value	
Class Name	?
Instance Name	?
Attribute Name	?
Source	?
	??

Function Block

These instructions are not available in function block.

Structured Text

GSV(ClassName,InstanceName,AttributeName,Dest)

SSV(ClassName,InstanceName,AttributeName,Source)

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Ladder Diagram and Structured Text

Operand	Туре	Format	Description
Class name		name	The name of object class
Instance name		name	The name of specific object, when object requires name
Attribute name		name	The attribute of object The data type depends on the attribute you select
Destination (GSV)	SINT	tag	The destination for attribute
	INT		data
	DINT		
	REAL		
	structure		
	TIME32		
	TIME		
	DT		
	LDT		
Source (SSV)	SINT	tag	The tag that contains data yo
	INT		want to copy to the attribute
	DINT		
	REAL		
	structure		
	TIME32		
	TIME		
	LTIME		
	DT		
	LDT		

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

Tip: When you use the GSV Instruction with the WallClock class and the CSTOffset attribute with the TIME32 data type, you must create the TIME32 data type tag a TIME32[2] array tag.

Description

The GSV/SSV instructions get and set controller status data that is stored in objects. The controller stores status data in objects. There is no status file, as in the PLC-5 processor.

When true, the GSV instruction retrieves the specified information and places it in the destination. When true, the SSV instruction sets the specified attribute with data from the source.

When you enter a GSV/SSV instruction, the programming software displays the valid object classes, object names, and attribute names for each instruction. For the GSV instruction, you can get values for all the attributes. For the SSV instruction, the software displays only those attributes you can set (SSV).

NOTE: CAUTION: Use the SSV instructions carefully. Making changes to objects can cause unexpected controller operation or injury to personnel.

You must test and confirm that the instructions do not change data that you do not want to change.

The SSV instructions write and the GSV instructions read past a member into other members of a tag. If the tag is too small, the instructions do not write or read the data. They log a minor fault instead.

Example 1

	GSV Get System Value
	Class Name Module Instance Name disc_in_2 Attribute Name FaultCode Dest disc_in_2_info.FaultCode 0
	GSV Get System Value
	Class Name Module Instance Name disc_in_2 Attribute Name FaultInfo Dest disc_in_2_info.FaultInfo 0
GSV Get System Value	
Class Name Instance Name Attribute Name Dest	Module disc_in_2 Mode disc_in_2_info.Mode
2#0000_0000_000	00_0000_0000_0000_0000 +

Member_A is too small for the attribute. So the GSV instruction writes the last value to Member_B.

Example 2

My_Tag is too small for the attribute. So the GSV instruction stops and logs a minor fault. The Destination tag remains unchanged.

GSV/SSV Objects define each object's attributes and their associated data types. For example, the MajorFaultRecord attribute of the Program object requires a DINT[11] data type.

Affects Math Status Flags

No.

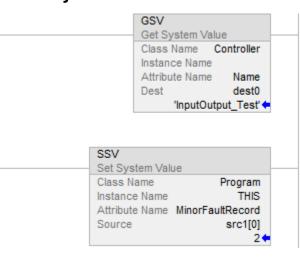
Major/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
There is an invalid object address	4	5
The specified object that does not support GSV/SSV	4	6
There is an invalid attribute	4	6
There was not enough information supplied for an SSV instruction	4	6
The GSV destination was not large enough to hold the requested data	4	7

See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram


Condition	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action Taken	
Prescan	See Prescan in the Ladder Diagrams table.	
Normal Execution	See rung-condition-in is true in the Ladder Diagrams table.	
Postscan	See Postscan in the Ladder Diagrams table.	

Example

Ladder Diagrams

Structured Text

GSV (Program, THIS, LASTSCANTIME, dest1);

SSV (Program, THIS, MinorFaultRecord, src[0]);

Immediate Output (IOT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

The IOT instruction immediately updates the specified output data (output tag of an I/O module or produced tag). The connection to the module must be open to enable the IOT instruction to execute.

Available Languages

Ladder Diagram

	IOT		
_	Immediate Output		-
	Update Tag	?	

Function Block

This instruction is not available in function block.

Structured Text

IOT (output_tag)

Operands

Ladder Diagram

Operand	ТҮРЕ	FORMAT	DESCRIPTION
Update Tag		Tag	Tag that contains data you
			want to copy to the attribute
			tag that you want to update;
			either:
			Output tag of an I/O module or
			Produced tag

Structured Text

The operands are the same as those for the ladder diagram IOT instruction.

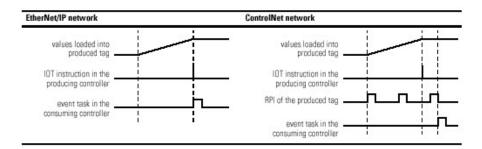
See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Description

The IOT instruction overrides the requested packet interval (RPI) of an output connection and sends fresh data over the connection.

An output connection is a connection that is associated with the output tag of an I/O module or with a produced tag. If the connection is for a produced tag, the IOT instruction also sends the event trigger to the consuming controller. This allows the IOT instruction to trigger an event task in the consuming controller.

To use an IOT instruction and a produced tag to trigger an event task in a consumer controller, check the Programmatically (IOT Instruction) Send Event Trigger to Consumer checkbox on the Connection tab of the **Tag Properties** dialog box.


Tip: For CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers , when controlling 5069 I/O over a remote network, an optimization is used to group module connections configured with the same RPI rate into one packet for sending over the network. If the IOT is used on one of these tags, the IOT may cause immediate update of some data tags for other modules that are configured at the same RPI and in the same backplane and are being grouped together with that tag. If this is not desirable, it can be avoided by making the RPI not exactly equal to the RPI other module connections.

Tip: When using this instruction with a ControlLogix Redundancy system, outputs controlled by this instruction may not be bumpless during a redundancy switchover.

The type of network between the controllers determines when the consuming controller receives the new data and event trigger via the IOT instruction.

Over this network	The consuming device receives the data and event trigger	
Backplane	Immediately	
EtherNet/IP	Immediately	
ControlNet	Within the actual packet interval (API) of the consumed tag	
	(connection)	

The following diagrams compare the receipt of data via an IOT instruction over EtherNet/IP and ControlNet networks.

Affects Math Status Flags

No

Fault Conditions

None specific to this instruction. See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	N/A	
Rung-condition-in is true	The instruction updates the connection of the specified tag resets the RPI timer of the connection.	
Postscan	N/A	

Structured Text

Condition/State	Action Taken	
Prescan	N/A	
Normal execution	See rung-condition-in is true in the Ladder Diagram	
Postscan	N/A	

Example

When the IOT instruction executes, it immediately sends the values of the Local:5:0 tag to the output module.

Ladder Diagram

IOT
Immediate Output
Update Tag Local:5:0

Structured Text

IOT (Local:5:0);

Immediate Output (IOT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

The IOT instruction immediately updates the specified output data (output tag of an I/O module or produced tag). The connection to the module must be open to enable the IOT instruction to execute.

Available Languages

Ladder Diagram

IOT		1
Immediate Output		ŀ
Update Tag	?	

Function Block

This instruction is not available in function block.

Structured Text

IOT (output_tag)

Operands

Ladder Diagram

Operand	ТҮРЕ	FORMAT	DESCRIPTION
Update Tag		Tag	Tag that contains data you
			want to copy to the attribute
			tag that you want to update;
			either:
			Output tag of an I/O module or
			Produced tag

Structured Text

The operands are the same as those for the ladder diagram IOT instruction.

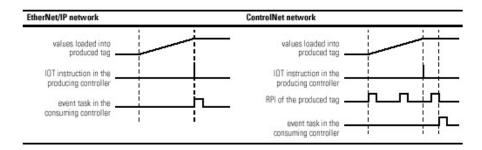
See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Description

The IOT instruction overrides the requested packet interval (RPI) of an output connection and sends fresh data over the connection.

An output connection is a connection that is associated with the output tag of an I/O module or with a produced tag. If the connection is for a produced tag, the IOT instruction also sends the event trigger to the consuming controller. This allows the IOT instruction to trigger an event task in the consuming controller.

To use an IOT instruction and a produced tag to trigger an event task in a consumer controller, check the Programmatically (IOT Instruction) Send Event Trigger to Consumer checkbox on the Connection tab of the **Tag Properties** dialog box.


Tip: For CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers , when controlling 5069 I/O over a remote network, an optimization is used to group module connections configured with the same RPI rate into one packet for sending over the network. If the IOT is used on one of these tags, the IOT may cause immediate update of some data tags for other modules that are configured at the same RPI and in the same backplane and are being grouped together with that tag. If this is not desirable, it can be avoided by making the RPI not exactly equal to the RPI other module connections.

Tip: When using this instruction with a ControlLogix Redundancy system, outputs controlled by this instruction may not be bumpless during a redundancy switchover.

The type of network between the controllers determines when the consuming controller receives the new data and event trigger via the IOT instruction.

Over this network	The consuming device receives the data and event trigger	
Backplane	Immediately	
EtherNet/IP	Immediately	
ControlNet	Within the actual packet interval (API) of the consumed tag	
	(connection)	

The following diagrams compare the receipt of data via an IOT instruction over EtherNet/IP and ControlNet networks.

Affects Math Status Flags

No

Fault Conditions

None specific to this instruction. See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	N/A	
Rung-condition-in is true	The instruction updates the connection of the specified tag resets the RPI timer of the connection.	
Postscan	N/A	

Structured Text

Condition/State	Action Taken	
Prescan	N/A	
Normal execution	See rung-condition-in is true in the Ladder Diagram	
Postscan	N/A	

Example

When the IOT instruction executes, it immediately sends the values of the Local:5:0 tag to the output module.

Ladder Diagram

IOT	
Immediate Output	_
Update Tag Local:5:0	

Structured Text

IOT (Local:5:0);

•

Reference (REF)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The Reference (REF) Instruction associates a reference with the address of an axis or coordinate system concrete tag.

This is a transitional instruction. Follow these steps when using it:

- In ladder logic, insert an instruction to toggle the rung-condition-in from false to true each time the instruction should execute.
 - In a Structured Text routine, insert a condition for the instruction to cause it to execute only on a transition.

Available Instructions

Ladder Diagram

REF			
Source)	?	
Refere	nce	?	

Function Block

This instruction is not available in function block.

Structured Text

REF(Source, Reference);

Operands

Operand	Туре	Type Format	
Source	AXIS_CIP_DRIVE	Immediate Tag	Name of the axis or coordinate
	AXIS_CONSUMED		system to reference.
	AXIS_GENERIC_DRIVE		
	AXIS_SERVO		
	AXIS_SERVO_DRIVE		
	AXIS_VIRTUAL		
	COORDINATE_SYSTEM		
Reference	REF_TO_AXIS_CIP_DRIVE	Tag	Name of the reference to be
	REF_TO_AXIS_CONSUMED		populated.
	REF_TO_AXIS_GENERIC_DRIVE		
	REF_TO_AXIS_SERVO		
	REF_TO_AXIS_SERVO_DRIVE		
	REF_TO_AXIS_VIRTUAL		
	REF_TO_COORDINATE_SYSTEM		

Affects Math Status Flags

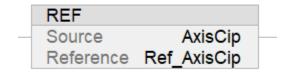
No

Major/Minor Faults

None specific to this instruction.

Execution

Condition/State	Action Taken
Prescan	The instruction uses the Source address to populate the
	Reference.


Condition/State	Action Taken
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in. The instruction
	uses the Source address to populate the Reference.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in. The instruction
	uses the Source address to populate the Reference.
Postscan	The instruction uses the Source address to populate the
	Reference.

Error Codes

None specific to this instruction.

Example

Relay Ladder

Structured Text

REF(AxisCip, Ref_AxisCip);

Access System Values

This procedure will help you to get or use status information about your Logix 5000 controller.

If you want to:	Refer to this help topic:	
use specific key words in your logic to monitor specific events	Monitor Status Flags on page 281	
get or set system values	Get and Set System Data on page 267	
get information about the memory of the controller	Determine Controller Memory Information on page 259	

Access the AddOnInstructionDefinition Object

The **AddOnInstructionDefinition** object lets you customize instructions for sets of commonly-used logic, provides a common interface to this logic, and provides documentation for the instruction.

For details, see the Co	ontrollers Add-On I	Instructions Prod	gramming Manual	, publication	1756-PM010.
-------------------------	---------------------	-------------------	-----------------	---------------	-------------

Attribute	Data Type	Instruction within Standard Task	Instruction within Safety Task	Description
LastEditDate	LINT	GSV	None	Timestamp of the
				last edit to an Add-On
				Instruction.

Attribute	Data Type	Instruction within Standard Task	Instruction within Safety Task	Description
MajorRevision	DINT	GSV	None	Major revision number of the Add-On Instruction.
MinorRevision	DINT	GSV	None	Minor revision number of the Add-On Instruction.
Name	String	GSV	GSV	Name of the Add-On Instruction.
RevisionExtendedText	String	GSV	None	Text describing the revision of the Add-On Instruction.
SafetySignature ID	DINT	GSV	None	In a safety project, the ID number, date, and timestamp of an Add-On Instruction definition.
SignatureID	DINT	GSV	None	32-bit identification number of an Add-On Instruction definition.
Vendor	String	GSV	None	Vendor that created the Add-On Instruction.

Access the ALARMBUFFER object

The ALARMBUFFER object is part of the Publisher/Subscriber infrastructure. The Publisher/Subscriber infrastructure is part of the Logix controller communication subsystem. The Logix controller communication subsystem implements Publisher/Subscriber messaging patterns for CIP, which lets other devices receive messages sent by the controller subsystem. Currently, Digital and Analog Alarms and Batch Equipment Phase subsystems use the Publisher/Subscriber Infrastructure to deliver messages through CIP to subscribing applications.

Use the ALARMBUFFER object to help you determine the existence of connections to the Publisher/Subscriber subsystem and their status. An AlarmBuffer object instance exists for every subscribing application. This means that an AlarmBuffer object may exist at one point in time, but not exist at another time. For this reason, a Get System Value (GSV) instruction returns a status as part of the destination tag (INT[0].0). When the status bit is zero, this most likely means that the AlarmBuffer object no longer exists.

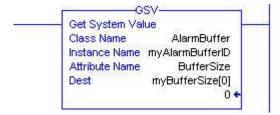
Attribute	Data Type	Instruction	Description	
AlarmBufferInstance	DINT[n]	GSV	Returns the AlarmBuffer object IDs.	
			DINT[0]	Number of AlarmBuffer
				objects.
			DINT[1(n-1)	AlarmBuffer object IDs.

Chapter 4 Input/Output Instructions

Attribute	Data Type	Instruction	Description	
			If the number of A	larmBuffer objects is greater
			than n-1, only the I	Ds of the first (n-1) objects are
			returned.	
			You do not have to	specify an AlarmBuffer
			Instance ID for this	s attribute.
AlarmBufferStatus	INT[2]	GSV	Returns the status	of the specified AlarmBuffer
			object. You have to	o specify the AlarmBuffer
			Instance ID to get	the status of that individual
			instance.	
			INT[0].0	1-AlarmBufferStatus
				Attribute is valid.
				0-AlarmBufferStatus
				Attribute is invalid.
			INT[1]	AlarmBuffer Status
				Attribute value.
			The Statue attribut	te contains the following:
				-
			INT[1].0	1-Multi-message
				packets enabled.
				0-Multi-message
				packets disabled.
			INT[1].1	1-Buffer is enabled.
				0-Buffer is disabled.
			INT[1].2	1-Data stored in the
				buffer.
				0-Buffer is empty.
			INT[1].3	1-Buffer is full.
				0-Buffer is not full.
			INT[1].4	1-Initialization Status
				messages WILL
				NOT be sent (at
				subscription time
				and on Redundancy
				switchover).
				0-Initialization Status
				messages WILL be ser
			All other bits are re	eserved and are set to O.
BufferSize	INT[2]	GSV	Returns the buffer	size (in kB) of the specified
				t. You have to specify the Alarn
			-	to get the buffer size of that
			individual instance	
			INT[0].0	1-BufferSize Attribute i
			C - 2-	valid.

Attribute	Data Type	Instruction	Description		
				O-BufferSize Attribute is invalid.	
			INT[1]	Buffer Size Attribute value.	
BufferUsage	INT[2]	GSV	Returns the percentage of buffer space used by the specified AlarmBuffer Object. You have to specify the AlarmBuffer Instance ID to get the buffer usage value of that individual instance.		
			INT[0].1	1-BufferUsage Attribute is valid. O-BufferUsage Attribute is invalid.	
			INT[1]	BufferUsage Attribute value.	
SubscriberName	STRING	GSV	AlarmBuffer object AlarmBuffer Instan name of that indivi Any string type can tag. If the Subscriber N destination tag stri name that can fit in by the instruction. If the AlarmBuffer of instance ID does no called, then the stri to zero. Note that if no subscribe then the subscribe to a device serial n	a be referenced as a destination ame cannot fit into the provided ing, then only the part of the n the destination tag is provided object instance specified by the ot exist when the instruction is ing length (.LEN member) is set scriber name is provided when is created by a subscriber, r name attribute is set umber associated with a n which the Create service on	

GSV Instruction Example


Your program can contain a GSV instruction to obtain the list of current AlarmBufferInstances in the controller. This instruction will return the total count of alarm buffer objects currently present in the controller (DINT[0]) along with the associated AlarmBuffer object Instance ID (DINT[1] – DINT[n-1]) for each AlarmBuffer object that is present in the controller. The GSV instruction displays the value of the number of AlarmBuffer objects (DINT[0]) under the Dest (destination) tag name.

Your program can use the AlarmBuffer object Instance ID to obtain information related to a specific instance of the AlarmBuffer object that is present in the controller. A status word (INT[0]), indicating valid or invalid data, is returned in the destination tag for the AlarmBufferStatus, BufferSize, and BufferUsage attributes, as the alarm buffer objects can be created and deleted at any time. The returned value is in (INT[1]) when the Attribute Name equals AlarmBufferStatue, BufferSize, or BufferUsage. The returned value is the subscriber name when the Attribute Name is SubscriberName. No status is returned for the SubsriberName attribute.

Ladder Diagram

Following is an example of the GSV instruction retrieving the AlarmBuffer object IDs.

Although the GSV of the AlarmBufferInstances returns the values into an array, you cannot use the array address to get attribute values for that instance. You must copy or move the value in myAlarmBufferInstances[x], (where x = 1, 2, 3,...) to a direct (unindexed) tag like the myAlarmBufferID shown in the following illustration.

Following is an example of the GSV instruction retrieving the buffer size of the AlarmBuffer object.

The number that is displayed under the Dest (destination) tag name is the valid or invalid bit value when the Attribute Name is AlarmBufferStatus, BufferSize or BufferUsage.

Structured Text

Following is an example of the GSV instruction retrieving the AlarmBuffer object IDs.

GSV(AlarmBuffer, AlarmBufferInstances, myAlarmBufferInstances[0]);

Following is an example of the GSV instruction retrieving the AlarmBuffer Object.

GSV(AlarmBuffer, myAlarmBufferID, BufferSize, myBufferSize[0]);

Access the Axis object

The AXIS object provides status information about an axis. Specify the axis tag name to determine which AXIS object you want.

For more information about the AXIS object, see the SERCOS and Analog Motion Configuration and Startup User Manual, publication MOTION-UM001.

When an attribute is marked with an asterisk (*), it means that the attribute is located in both the controller and in the motion module.When you use an SSV instruction to write one of these values, the controller automatically updates the copy in the module. However, this process is not immediate. The axis status tag, ConfigUpdateInProcess is provided to indicate when this process is complete.

For example, if you perform an SSV to the PositionLockTolerance, ConfigUpdateInProcess of the Axis tag is set until an update to the module is successful. Therefore, the logic following the SSV could wait on this bit resetting before continuing in the program.

Attribute	Data Type	Instruction	Description
*	REAL	GSV	The torque command output % necessary to
AccelerationF		SSV	generate the commanded acceleration.
eedForwardG			
ain			
ACStopMode	SINT	GSV	The type of stop to perform your axis
		SSV	• 0 = fast stop
			• 1 = fast shutdown
			• 2 = hard shutdown
ActualPosition	REAL	GSV	The actual position in position units of your
			axis.
ActualVelocity	REAL	GSV	The actual velocity of your axis in position
			units/second.
AnalogInput1	REAL	GSV	This attribute applies only to an axis associated
		SSV	Analog Input 2, a Kinetix7000 Drive. This
			attribute with an interger range of +/-16384,
			represents the analog value of an analog
			device connected to the Kinetix7000 drive's
			analog input(s). These inputs are useful for
			web/converting applications with load cell
			(measuring web force on a roller) or dancer
			(measuring web force/position directly),
			which can be directly connected to the drive
			controlling the web.
AverageVeloc	REAL	GSV	The average velocity of your axis in position
ity			units/second.
AverageVeloci	REAL	GSV	The timebase in seconds of the average
tyTimebase		SSV	velocity of your axis.
AxisConfigurat	SINT	GSV	The state of the axis configuration
ionState			• 0 - 126 = not yet configured
			• 127 = invalid consumed axis data due to
			incompatible revisions between produced
			and consumer
			• 128 = configured

Attribute	Data Type	Instruction	Description
			• 3 = waiting on reply
			• 4 = configured
Bandwidth	REAL	GSV	The unity gain bandwidth (Hz) that the
		SSV	controller uses to calculate the gains for a
			Motion Apply Axis Tuning (MAAT) instruction.
C2CConnectio	DINT	GSV	The connection instance of the controller
nInstance			producing the axis data.
C2CMapTablel	DINT	GSV	The map instance of the controller producing
nstance			the axis data.
CommandPosi	REAL	GSV	The command position of your axis in position
tion			units.
CommandVelo	REAL	GSV	The command velocity of your axis in position
city			units.
ConversionCo	REAL	GSV	The conversion factor used to convert
nstant		SSV	from your units to feedback counts in
			counts/position unit.
DampingFac	REAL	GSV	The value used in calculating the maximum
tor		SSV	position servo bandwidth during the execution
			of the Motion Run Axis Tuning (MRAT)
			instruction.
*DriveFaultAct	SINT	GSV	The operation performed when a drive fault
ion		SSV	occurs.
			• 0 = shutdown the axis
			• 1 = disable the drive
			• 2 = stop the commanded motion
			• 3 = change the status bit only
DynamicsConf	DINT	GSV	Revision 16 improved how the controller
igurationBits		SSV	handles changes to an S-curve profile.
			Do you want to return to revision 15 or earlier
			behavior for S-curves?
			NO — Leave these bits ON (default).
			YES — Turn OFF one or more of these bits:
			To turn off Turn off this bit
			this change
			Reduced 0
			S-curve Stop
			Delay
			This change
			applies to the
			Motion Axis Stop (MAS)
			5100 01451

Attribute	Data Type	Instruction	Description
	para i Ahe		
			It lets you
			use a higher
			deceleration
			jerk to stop an
			accelerating
			axis more
			quickly.
			The controller
			uses the
			deceleration
			jerk of the
			stopping
			instruction if
			it is more than
			the current
			acceleration
			jerk.
			Reduced 1
			S-curve
			Velocity
			Reversals
			Before
			revision 16,
			you could
			cause an
			axis to
			momentarily
			reverse
			direction
			if you
			decreased the
			deceleration
			jerk while
			the axis was
			decelerating.
			This typically
			happened
			if you tried
			to restart a
			jog or move
			with a lower
			deceleration
			rate while
			the axis was

Attribute	Data Type	Instruction	Description
			stopping.
			This change
			prevents the
			axis from
			reversing
			in those
			situations.
			Reduced 2
			S-curve
			Velocity
			Overshoots
			You can cause
			an axis to
			overshoot its
			programmed
			speed if you
			decrease the
			acceleration
			jerk while
			the axis is
			accelerating.
			This change
			keeps to
			overshoot to
			no more than
			50% of the
			programmed
			speed.
*FeedbackFau	SINT	GSV	The operation performed when an encoder loss
ItAction		SSV	fault occurs.
			• 0 = shutdown the axis
			• 1 = disable the drive
			• 2 = stop the commanded motion
			• 3 = change the status bit only
*FeedbackNoi	SINT	GSV	The operation performed when an encoder
seFaultAction		SSV	noise fault occurs.
			• 0 = shutdown the axis
			• 1 = disable the drive
			• 2 = stop the commanded motion
			• 3 = change the status bit only
*FrictionComp	REAL	GSV	The fixed output level in volts used to
ensation		SSV	compensate for static friction.

Attribute	Data Type	Instruction	Description
GroupInstance	DINT	GSV	The instance number of the motion group that
		SSV	contains your axis.
HardOvertrave	SINT	GSV	• 0 = shutdown
IFaultAction		SSV	• 1= disable the drive
			• 2 = stop motion
			• 3 = status only
HomeConfigur	DINT	GSV	The motion configuration bits for your axis.
ationBits		SSV	• 0 = home direction
			• 1 = home switch normally closes
			• 2 = home marker edge negative
HomeMode	SINT	GSV	The homing mode for your axis.
		SSV	• 0 = passive homing
			• 1 = active homing (default)
			• 2 = absolute
HomePosition	REAL	GSV	The homing position of your axis in position
		SSV	units.
HomeReturnS	REAL	GSV	The homing return speed of your axis in
peed		SSV	position units/second.
HomeSeque	SINT	GSV	The homing sequence type for your axis.
nce		SSV	• 0 = immediate homing
			• 1 = switch homing
			• 2 = marker homing
			• 3 = switch-marker homing (default)
HomeSpeed	REAL	GSV	The homing speed of your axis in position
			units/second.
Instance	DINT	GSV	The instance number of the axis.
InterpolatedAc	REAL	GSV	For time-based position captures, this attribute
tualPosition			provides the interpolated actual axis position.
			The position is specified in position units, and
			is based on the value of the InterpolationTime
			attribute.
			To interpolate an actual axis position, use an
			SSV instruction to set the InterpolationTime
			attribute.
InterpolatedCo	REAL	GSV	For time-based position captures, this attribute
mmandPosit			provides the interpolated command axis
ion			position.
			The position is specified in position units, and
			is based on the value of the InterpolationTime
			attribute.

Attribute	Data Type	Instruction	Description	l	
			To interpola	te a command axis	s position, use
			an SSV instr	uction to set the Ir	nterpolationTime
			attribute.		
InterpolationT	DINT	GSV	Use this attr	ribute to provide a	reference for
ime		SSV	time-based	position captures.	
			To interpola	te a position, use a	an SSV instruction
			to set the In	terpolationTime at	tribute. The
			controller th	ien updates the fol	lowing attributes:
			• Interpo	olatedActualPositio	n
			• Interpo	olatedCommandPo	sition
			To supply a	value for Interpola	tionTime, you can
			use any eve	nt that produces a	CST timestamp,
			such as:		
				rationTime attribut	
				amp of a digital ou	
				ationTime attribut	
			lower 32 bit	s of a CST timestar	np.
MapTableInsta nce	DINT	GSV	The I/O map	instance of the se	ervo module.
MasterOffset	REAL	GSV	Position off	set that is currently	y applied to the
			master of a position cam. Specified in positio		cified in position
			units of the	master axis.	
MaximumAcce	REAL	GSV	The maximu	Im acceleration of	your axis in
leration		SSV	position uni	ts/second .	
MaximumDece	REAL	GSV	The maximu	ım deceleration of	your axis in
leration		SSV	position uni	ts/second .	
*MaximumNeg	REAL	GSV	The maximu	ım negative travel	limit in position
ativeTravel		SSV	units.		
*MaximumPos	REAL	GSV	The maximu	ım positive travel li	imit in position
itiveTravel		SSV	units.		
MaximumSp	REAL	GSV	The maximu	Im speed of your a	xis in position
eed		SSV	units/secon	d.	
ModuleChan	SINT	GSV	The channel	l of your servo mod	lule.
nel				-	
MotionStatusB	DINT	GSV	The motion	status bits for you	r axis. (In
its				ucture, this is the N	
			member.		
			Bit	Bit name	Meaning
			0	AccelStatus	acceleration
			1	DecelStatus	deceleration
			2	MoveStatus	move

Attribute	Data Type	Instruction		Description		
				3	JogStatus	jog
				4	GearingStatus	gear
				5	HomingStatus	home
				6	StoppingSta	stop
					tus	
				7	AxisHomedSta	homed status
					tus	
				8	PositionCamSt	position cam
					atus	
				9	TimeCamSta	time cam
					tus	
				10	PositionCamP	position cam
					endingStatus	pending
				11	TimeCamPend	time cam
					ingStatus	pending
				12	GearingLockSt	gearing lock
					atus	
				13	PositionCamL	position cam
					ockStatus	lock
				14	MasterOffsetM	master offset
					oveStatus	move
				15	CoordinatedM	coordinate
					otionStatus	motion
				16	TransformStat	
				17	eStatus	state
				17	ControlledByTr ansformSta	control by transform
					tus	
[•] OutputLPFilte	RFAI	GSV	The handwidth	(Hz) of the serve	low-pass digital	output filter.
Bandwidth	-	SSV		. ,	, u.g.u	
*OutputLimit	REAL	GSV	The value in vo	lts of the maxim	um servo output	voltage of your
-		SSV	axis.			
*OutputOffset	REAL	GSV	The value in vo	lts used to offse	t the effects of th	e cumulative
		SSV	offsets of the s	servo module DAC	C output and the s	servo drive
			input.			
PositionError	REAL	GSV	The difference	between the act	ual and command	d position of an
			axis.			
*PositionError	REAL	GSV	The amount of	position error in	position units the	at the servo
Tolerance		SSV	tolerates befor	e issuing a posit	ion error fault.	

Attribute	Data Type	Instruction		Description
PositionIntegr atorError	REAL	GSV	The sum of	f the position error for an axis in position units.
*PositionInteg	REAL	GSV	The value (1/msec ²) used to achieve accurate axis positioning	
ralGain		SSV	despite disturbances such as static friction and gravity.	
*PositionLock	REAL	GSV	The amoun	nt of position error in position units that the servo
Tolerance		SSV	module tol	erates when giving a true position locked status
			indication.	
*PositionProp	REAL	GSV	The value (1/msec) the controller multiples with the position
ortionalGain		SSV	error to co	rrect for the position error.
PositionServo	REAL	GSV	The unity g	ain bandwidth that the controller uses to calculate
Bandwidth		SSV	the gains f	or a Motion Apply Axis Tuning (MAAT) instruction.
*PositionUnw	DINT	GSV	The value u	used to perform the automatic unwind of the rotary
ind		SSV	axis in counts/revolution.	
ProcessStatus	INT	GSV	The status	of the last Motion Run Hookup Diagnostic (MRHD)
			instruction	L.
			Value	Meaning
			0	test process successful
			1	test in progress
			2	test process aborted by the user
			3	test exceeded 2-second timeout
			4	test process failed due to servo fault
			5	insufficient test increment
ProgrammedS	SINT	GSV	The type of	f stop to perform on your axis.
topMode		SSV	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			Value	Meaning
			0	fast stop
			1	fast shutdown
			2	hard shutdown
Registration1P osition	REAL	GSV	The registr	ration position for your axis in position units.
			Vou oco ···	a this attribute to supply a timestemp for time based
RegistrationT ime	DINT	GSV	rou can us position ca	e this attribute to supply a timestamp for time-based
11110				egistrationTime attribute contains the lower 32 bits
				e CST timestamp of an axis registration event
				ST timestamp is measured in microseconds

Attribute	Data Type	Instruction		Description	
			• To in	terpolate a position b	ased on an axis registration
			even	t:	
			0	Use a GSV instructior	n to get the value of the
				RegistrationTime att	ribute.
			o	Use an SSV instruction	on to set the InterpolationTime
				attribute to the value	of the RegistrationTime
				attribute.	
RotaryAxis	SINT	GSV	0 = Linear		
		Tag	1 = Rotary		
			When the	Rotary Axis attribute i	s set true (1), it lets the axis
			unwind. Th	nis gives infinite posit	ion range by unwinding the
			axis positi	on whenever the axis	moves through a complete
			physical re	evolution. The number	r of encoder counts per physical
			revolution	of the axis is specifie	ed by the Position Unwind
			attribute. I	For Linear operation,	the counts don't roll over. They
			are limited	1 to +/- 2 billion.	
ServoFaultBits	DINT	GSV	The servo fault bits for your servo loop. (In the AXIS structure,		
			this is the	AxisEvent member.)	
			Bit	Bit name	Meaning
			0	PosSoftOvertr	positive overtravel fault
				avelFault	
			1	NegSoftOvertr	negative overtravel fault
				avelFault	
			2	NegSoftOvertr	position error fault
			-	avelFault	
			3		encoder channel A loss fault
			4		encoder channel B loss fault
			5	FeedbackFault	encoder channel Z loss fault
			6	FeedbackNois	encoder noise fault
				eFault	
			7	DriveFault	drive fault
			8	ModuleSyncFa	synchronous connection fault
				ult	
			9	ModuleHardwa	servo hardware fault
				reFault	
ServoOutputLe vel	REAL	GSV	The outpu	t voltage level in volts	for your axis servo loop.
ServoStatusB	DINT	GSV	The status	bits for your servo lo	op. (In the AXIS structure, this is
its				Status member.)	

Chapter 4 Input/Output Instructions

Attribute	Data Type	Instruction		Description
			0	ServoActionSt servo action
				atus
			1	DriveEnableSt drive enable
				atus
			2	OutputLimitSt output limit
				atus
			3	PositionLockS position lock
				tatus
			13	TuneStatus tuning process
			14	ProcessStatus test diagnostic
			15	ShutdownSta axis shutdown
				tus
*SoftOvertrave	SINT	GSV	The operation	performed when a soft overtravel fault occurs.
IFaultAction		SSV	0 = shutdown t	he axis
			1 = disable the	drive
			2 = stop the co	mmanded motion
			3 = change the	status bit only
StartActualPos	REAL	GSV	The actual pos	ition in position units of your axis when new
ition			commanded m	otion starts for the axis.
StartComman	REAL	GSV	The command	position in position units of your axis when new
dPosition			commanded m	otion starts for the axis.
StartMasterOff	REAL	GSV	The master off	set when the last Motion Axis Move (MAM)
set				cuted either of these types of moves:
				lasterOffset
				talMasterOffset sition units of the master axis.
0	DEAL			
StrobeActualP osition	REAL	GSV		ition in position units of an axis when the Motion osition (MGSP) instruction executes.
	DEAL		-	
StrobeComma ndPosition	REAL	GSV		position in position units of an axis when the troe (MGSP) instruction executes.
	DEAL	001/		
StrobeMaster0 ffset	REAL	GSV		set when the Motion Group Strobe Position ion executes. Specified in position units of the
11361			master axis.	ion executes, specified in position difficient of the
TestDirectionF	SINT	GSV		f axis travel during the Motion Run Hookup
orward	JIII	001		HD) instruction as seen by the servo module.
				everse) direction
				ward) direction
TuneAccelerat	REAL	GSV	The acceleration	2 on value in position units/sec measured during
ion				Run Axis Tuning (MRAT) instruction.
TuneAccelerat	REAL	GSV	The acceleration	on time in seconds measured during the last
ionTime				s Tuning (MRAT) instruction.

Attribute	Data Type	Instruction	Description
TuneDecelerat	REAL	GSV	The deceleration value in position units/sec measured during
ion			the last Motion Run Axis Tuning (MRAT) instruction.
TuneDecelerat	REAL	GSV	The deceleration time in seconds measured during the last
ionTime			Motion Run Axis Tuning (MRAT) instruction.
Tunelnertia	REAL	GSV	The inertia value in mV/Kcounts/second for the axis as
			calculated from the measurements the controller made during
			the last Motion Run Axis Tuning (MRAT) instruction.
TuneRiseTime	REAL	GSV	The axis rise time in seconds measured during the last Motion
			Run Axis Tuning (MRAT) instruction.
TuneSpeedSca	REAL	GSV	The axis drive scaling factor in mV/Kcounts/sec measured
ling			during the last Motion Run Axis Tuning (MRAT) instruction.
TuneStatus	INT	GSV	The status of the last Motion Run Axis Tuning (MRAT) instruction.
			• 0 = tune process successful
			• 1 = tuning in progress
			• 2 = tune process aborted by the user
			• 3 = tune exceeded 2-second timeout
			• 4 = tune process failed due to servo fault
			• 5 = axis reached tuning travel limit • 6 = axis polarity
			set incorrectly \bullet 7 = tune speed is too small to make
			measurements
TuningConfigu	DINT	GSV	The tuning configuration bits for your axis.
rationBits		SSV	• 0 = turning direction (0=forward, 1=reverse)
			• 1 = tune position error integrator
			• 2 = tune velocity error integrator
			• 3 = tune velocity feedforward bit
			• 4 = acceleration feedforward
			• 5 = tune velocity low-pass filter
TuningSpeed	REAL	GSV	The maximum speed in position units/second initiated by the
		SSV	Motion Run Axis Tuning (MRAT) instruction.
TuningTravelLi	REAL	GSV	The travel limit used by the Motion Run Axis Tuning (MRAT)
		SSV	instruction to limit the action during tuning.
mit			
mit VelocityComm	REAL	GSV	The current velocity reference in position units/second to the
	REAL	GSV	The current velocity reference in position units/second to the velocity servo loop for an axis.
VelocityComm	REAL	GSV GSV	
VelocityComm and			velocity servo loop for an axis.
VelocityComm and			velocity servo loop for an axis. The difference in position units/second between the
VelocityComm and VelocityError	REAL	GSV	velocity servo loop for an axis. The difference in position units/second between the commanded and actual velocity of a servo axis.
VelocityComm and VelocityError VelocityFeedb ack	REAL	GSV GSV	velocity servo loop for an axis. The difference in position units/second between the commanded and actual velocity of a servo axis. The actual velocity in position units/second of your axis as estimated by the servo module.
VelocityComm and VelocityError VelocityFeedb ack *VelocityFeedf	REAL	GSV GSV GSV	velocity servo loop for an axis. The difference in position units/second between the commanded and actual velocity of a servo axis. The actual velocity in position units/second of your axis as estimated by the servo module. The velocity command output % necessary to generate the
VelocityComm and VelocityError VelocityFeedb ack	REAL	GSV GSV	velocity servo loop for an axis. The difference in position units/second between the commanded and actual velocity of a servo axis. The actual velocity in position units/second of your axis as estimated by the servo module.

Attribute	Data Type	Instruction	Description
VelocityIntegr	REAL	GSV	The sum of the velocity error for a specified axis.
atorError			
*VelocityProp	REAL	GSV	The value (1/msec) that the controller multiplies with the
ortionalGain		SSV	VelocityError to correct the velocity error.
*VelocityScal	REAL	GSV	The value used to convert the output of the servo loop into the
ing		SSV	equivalent voltage to the drive.
VelocityServo	REAL	GSV	The bandwidth (Hz) of the drive as calculated from the
Bandwidth		SSV	measurements made during the last Motion Run Axis Tuning
			(MRAT) instruction.
WatchPosition	REAL	GSV	The watch position in position units of your axis.

Access the Controller object

The **Controller** object provides status information about controller execution.

Attribute	Data Type	Instruction	Description
Audit Value	DINT[2], LINT	GSV	The audit value is a unique
			value that is generated when
			a project is downloaded to
			the controller or loaded from
			removable storage. When a
			change is detected, this value
			is updated.
			To specify which changes
			are monitored, use the
			ChangesToDetect attribute.
ChangesToDetect	DINT[2], LINT	GSV, SSV	Used to specify which changes
			are monitored. When a
			monitored change occurs, the
			Audit Value is updated.
CanUseRPIFrom	DINT	GSV	Identifies whether to use the
Producer			RPI specified by the producer.
			• O. Do not use the
			RPI specified by the
			producer.
			• 1. Use the RPI specified
			by the producer.
ControllerLog Execution	DINT	GSV SSV	Number of controller log
Modification Count			entries that originate from
			a program/task properties

Attribute	Data Type	Instruction	Description
			change, an online edit, or a
			controller timeslice change.
			It can also be configured to
			include log entries originating
			from forces. The number is
			reset if RAM enters a bad state
			The number is not capped at
			the largest DINT, and a rollover
			can occur.
Controllari og	DINT	GSV SSV	
ControllerLog	וחום	024 224	Number of controller log
TotalEntryCount			entries since the last firmware
			upgrade. The number is reset
			if RAM enters a bad state.
			The number is capped at the
			largest DINT.
DataTablePad	INT	GSV	Percentage (0100) of free
Percentage			data table memory set aside.
IgnoreArrayFaultsDuringPostS	SINT	GSV SSV	Used to configure the
can			suppression of selected
			faults encountered when an
			SFC action is postscanned.
			Only valid when SFCs are
			configured for automatic
			reset.
			O. This value does not not
			suppress faults during
			postscan execution.
			This is the default and
			recommended behavior.
			• 1. This value
			automatically suppresses
			major faults 4/20 (Array
			subscript too large) and
			4/83 (Value out of range)
			while postscanning SFC
			actions.
			When a fault is suppressed,
			the controller uses an internal
	1		fault handler to automatically
			clear the fault. This causes
			clear the fault. This causes the faulted instruction to
			clear the fault. This causes

Chapter 4 Input/Output Instructions

Attribute	Data Type	Instruction	Description
			Because the fault handler is
			internal, you do not have to
			configure a fault handler to ge
			this behavior. In fact, even if
			a fault handler is configured,
			a suppressed fault will not
			trigger it.
InhibitAutomatic	BOOL	GSV SSV	Identifies whether to enable
FirmwareUpdate			the firmware supervisor.
			• 0. This value executes
			the firmware supervisor.
			• 1. This value does not
			execute the firmware
			supervisor.
KeepTestEditsOnSwitch over	SINT	GSV	Identifies whether to maintain
·			test edits on controller
			switchover.
			O. This value
			automatically untests
			edits at switchover,
			 1. This value continues
			testing edits at
			switchover.
Name	String	GSV	Name of the controller.
Redundancy	SINT	GSV	Identifies whether the
Enabled			controller is configured for
			redundancy.
			• 0. This value indicates
			the controller is
			not configured for
			redundancy.
			• 1. This value indicates the
			controller is configured
			for redundancy.
ShareUnused	INT	GSV SSV	Identifies how the continuous
TimeSlice			task and the background tasks
			shared any unused timeslice.
			• 0. This value indicates
			that the operating system
			does not give control
			to the continuous task
			even if background is
			complete.

Attribute	Data Type	Instruction	Description
			 1. This value indicates that a continuous task runs even if the background tasks are complete. This is the default value. 2. This value or greater logs a minor fault and leaves the setting unchanged.
TimeSlice	INT	GSV SSV	Percentage of available CPU (10-90) that is assigned to communications. This value cannot change when the keyswitch is in the Run position.

Access the ControllerDevice object

The **ControllerDevice** object identifies the physical hardware of the controller.

Attribute	Data Type	Instruction	Description
DeviceName	SINT[33]	GSV	ASCII string that identifies
			the marketing description
			of the controller. The first
			byte contains a count of the
			number of ASCII characters
			returned in the array string.
ProductCode	INT	GSV	Each value identifies the type
			of controller:
			15 SoftLogix5800
			40 1756-L1
			43 1769-L20
			44 1769-L30
			49 PowerFlex® with
			DriveLogix5725
			50 1756-L53
			51 1756-L55
			52 PowerFlex with
			DriveLogix5730
			53 Studio 5000 Logix Emulat
			54 1756-L61
			55 1756-L62
			56 1756-L63

Chapter 4 Input/Output Instructions

Attribute	Data Type	Instruction	Description
			57 1756-L64
			64 1769-L31
			65 1769-L35E
			67 1756-L61S
			68 1756-L62S
			69 1756-LSP
			72 1768-L43
			74 1768-L45
			76 1769-L32C
			77 1769-L32E
			78 1769-L35C
			79 1756-L60M03SE
			80 1769-L35CR
			85 1756-L65
			86 1756-L63S
			87 1769-L23E-QB1
			88 1769-L23-QBFC1
			89 1769-L23E-QBFC1
			92 1756-L71
			93 1756-L72
			94 1756-L73
			95 1756-L74
			96 1756-L75
			101 1768-L43S
			102 1768-L45S
			106 1769-L30ER
			107 1769-L33ER
			108 1769-L36ERM
			109 1769-L30ER-NSE
			110 1769-L33ERM
			146 1756-L7SP
			147 1756-L72S
			148 1756-L73S
			149 1769-L24ER-QB1B
			150 1769-L24ER-QBFC1B
			151 1769-L27ERM-QBFC1B
			152 1769-L19ER-BB1B
			153 1769-L16ER-BB1B
			154 1769-L18ER-BB1B
			155 1769-L18ERM-BB1B
			156 1769-L30ERM
			158 1756-L71S
			164 1756-L81E
			165 1756-L81E

Attribute	Data Type	Instruction	Description
			166 1756-L83E
			167 1756-L84E
			168 1756-L85E
			171 1756-L8SP
			176 1769-L30ERMS
			177 1769-L33ERMS
			178 1769-L36ERMS
			186 5069-L46ERMW
			188 5069-L310ER_NSE
			189 5069-L306ERM
			190 5069-L310ERM
			191 1756-MPC
			192 5069-L320ERM
			193 5069-L330ERM
			194 5069-L340ERM
			195 5069-L350ERM
			196 5069-L306ER
			201 1756-L81ENSE
			202 1756-L82ENSE
			203 1756-L83ENSE
			204 1756-L84ENSE
			205 1756-L85ENSE
			211 1756-L81ES
			212 1756-L82ES
			213 1756-L83ES
			214 1756-L84ES
			216 5069-L310ER
			217 5069-L320ER
			218 5059-L330ER
			219 5069-L340ER
			220 5069-L350ER
			220 5069-L310ERMS2
			222 5069-L320ERMS2
			222 5069-L320ERMS2
			223 5069-L350ERMS2
			224 5009-L340ER1132
			225 5069-L350ERMS2
			226 5069-L306ERMS2
			228 5069-L380ERM
			229 5069-L380ERMS2
			230 5069-L3100ERM
			231 5069-L3100ERMS2
			233 1769-L37ERMO

Attribute	Data Type	Instruction	Description
			235 5069-L306ERS2
			236 5069-L310ERS2
			237 5069-L320ERS2
			238 5069-L330ERS2
			239 5069-L340ERS2
			240 5069-L350ERS2
			241 5069-L380ERS2
			242 5069-L3100ERS2
			243 5069-L306ERMS3
			244 5069-L310ERMS3
			245 5069-L320ERMS3
			246 5069-L330ERMS3
			247 5069-L340ERMS3
			248 5069-L350ERMS3
			249 5069-L380ERMS3
			250 5069-L3100ERMS3
			255 1769-L38ERM
			256 1769-L38ERMS
			257 1769-L37ERM
			258 1769-L37ERMS
			282 1756-L81EP
			283 1756-L83EP
			284 1756-L85EP
			285 5069-L320ERP
			286 5069-L340ERP
			290 5069-L4100ERMW
			291 5069-L450ERMW
			292 5069-L4200ERMW
			293 5069-L430ERMW
			330 5015-AENFT
			*The product code list may no
			be complete.
ProductRev	INT	GSV	Identifies the current product
			revision. Display should be
			hexadecimal. The low byte
			contains the major revision;
			the high byte contains the
			minor revision.
SerialNumber	DINT	GSV	Serial number of the device.
			The serial number is assigned
		1	

Attribute	Data Type	Instruction	Description
Status	INT	GSV	Device Status Bits
			74 Meaning
			0000 Reserved
			0001 Flash update in progress
			0010 Reserved
			0011 Reserved
			0100 Flash is bad
			0101 Faulted modes
			0110 Run
			0111 Program
			Fault Status Bits
			118 Meaning
			0001 Recoverable minor fault
			0010 Unrecoverable minor
			fault
			0100 Recoverable major fault
			1000 Unrecoverable major
			fault
			Controller Status Bits
			1312 Meaning
			01 Keyswitch in run
			10 Keyswitch in program
			11 Keyswitch in remote
			1514 Meaning
			01 Controller is changing
			modes
			10 Debug mode if controller in
			run mode
Туре	INT	GSV	Identifies the device as a
			controller. Controller = 14.
Vendor	INT	GSV	Identifies the vendor of the
			device. Allen-Bradley = 0001.

Access the CoordinateSystem object

The COORDINATESYSTEM object provides status information about motion coordinate system execution.

Attribute	Data Type	Instruction	Meaning
CoordinateMotionStatus	DINT	GSV	Set when an axis lock is
		SSV	requested for an MCLM or
			MCCM instruction and the axis
			has crossed the Lock Position.
			Cleared when an MCLM or
			MCCM is initiated.

Attribute	Data Type	Instruction	Meaning
AccelStatus	BOOL	GSV	Sets when vector is
		SSV	accelerating. Clears when a
			blend is in process or when
			vector move is at speed or
			decelerating.
DecelStatus	BOOL	GSV	Sets when vector is
		SSV	decelerating. Clears when a
			blend is in process or when
			vector move is accelerating o
			when move completes.
ActualPosToleranceStatus	BOOL	GSV	Sets for Actual Tolerance
		SSV	termination type only. The bit
			is set after the following two
			conditions have been met.
			1) Interpolation is complete.
			2) The actual distance to the
			programmed endpoint is less
			than the configured coordina
			system's Actual Tolerance
			value. It remains set after the
			instruction completes. It is
			reset when a new instruction
			is started.
CommandPosToleranceStatus	BOOL	GSV	Sets for all termination types
		SSV	whenever the distance to the
			programmed endpoint is less
			than the configured coordina
			system's Command Tolerance
			value and remains set after
			the instruction completes. It
			reset when a new instruction
			is started.
RobotJointsDirectionSenseBits	DINT	GSV	Set of bits that define the
		SSV	Joints direction sense. By
			default, the Joints direction
			sense bits are zero. This
			indicates that the user
			convention is the same as
			the Rockwell Kinematics
			convention. If any of the Join
			have the opposite convention
			nave me nonosne convention

Attribute	Data Type	Instruction	Meaning
			set the corresponding Joints direction sense bit to 1.
StoppingStatus	BOOL	GSV SSV	The Stopping Status bit is cleared when the MCCM instruction executes.
MoveStatus	BOOL	GSV SSV	Sets when MCCM begins axis motion. Clears on the .PC bit o the last motion instruction or a motion instruction executes which causes a stop.
MoveTransitionStatus	BOOL	GSV SSV	Sets when No Decel or Command Tolerance termination type is satisfied. When blending collinear move the bit is not set because the machine is always on path. It clears when a blend completes, the motion of a pending instruction starts, or a motion instruction executes which causes a stop. Indicates not on path.
MovePendingStatus	BOOL	GSV SSV	The move pending bit is set once a coordinated motion instruction is queued. Once the instruction has begun executing, the bit will be cleared, provided no subsequent coordinated motion instructions have beer queued in the mean time. In th case of a single coordinated motion instruction, the status bit may not be detected by the user in the Logix Designer application since the transitio from queued to executing is faster than the coarse update. The real value of the bit comes in the case of multiple instructions. As long as an instruction is in the instruction

Attribute	Data Type	Instruction	Meaning
			be set. This provides the
			Logix Designer application
			programmer a means of
			stream-lining the execution
			of multiple coordinated
			motion instructions. Ladder
			logic containing coordinated
			motion instructions can
			be made to execute faster
			when the programmer allows
			instructions to be queued
			while a preceding instruction
			is executing. When the
			MovePendingStatus bit is clea
			the next coordinated motion
			instruction can be executed
			(that is, setup in the queue).
MovePendingQueueFullStatus	BOOL	GSV	Sets when the instruction
	5002	SSV	queue is full. It clears when
			the queue has room to hold
			another new coordinated mo
			instruction.
T (0 0))		001/	
TransformSourceStatus	BOOL	GSV	The coordinate system is the
		SSV	source of an active transform
TransformTargetStatus	BOOL	GSV	The coordinate system is the
		SSV	target of an active transform
CoorMotionLockStatus	BOOL	GSV	Set when an axis lock is
		SSV	requested for an MCLM or
			MCCM instruction and the axi
			has crossed the Lock Positio
			Cleared when an MCLM or
			MCCM is initiated.
			For the enumerations
			Immediate Forward Only and
			Immediate Reverse Only, the
			bit is set immediately when
			the MCLM or MCCM is initiated
			When the enumeration is
			Position Forward Only or
			Position Reverse Only, the bit
			is set when the Master Axis
			crosses the Lock Position in
			the specified direction. The b

Attribute	Data Type	Instruction	Meaning
			is never set if the enumeration
			is NONE.
			The CoordMotionLockStatus
			bit is cleared when the Master
			Axis reverses direction
			and the Slave Axis stops
			following the Master Axis. The
			CoordMotionLockStatus bit
			is set again when the Slave
			Coordinate System resumes
			following the Master Axis. The
			CoordMotionLockStatus bit is
			also cleared when an MCS is
			initiated.
coordinateDefinition	DINT	GSV	Coordinate Definition for the
ooranacopornicion	5 Mil		coordinates in geometry
		001/001/	
zeroAngleOffset4	REAL	GSV/SSV	Zero Angle Orientation for the
			fourth axis of non-Cartesian
			geometries.
zeroAngleOffset5	REAL	GSV/SSV	Zero Angle Orientation for the
			fifth axis of non-Cartesian
			geometries.
zeroAngleOffset6	REAL	GSV/SSV	Zero Angle Orientation for the
			sixth axis of non-Cartesian
			geometries.
linkLength3	REAL	GSV/SSV	Linear length of the wrist link
			of a robot.
ballScrewPitch	REAL	GSV/SSV	Pitch of SCARA Independent
			Coupled Screw.
ActiveToolFrameID	DINT	GSV/tag	Active Tool Identifier
Active rooir rameid	DINT	03v/ (ay	specified by user in the MCTO
			instruction.
MaxOrientationSpeed	REAL	GSV/SSV	Maximum speed of the
			orientation axes of the
			coordinate system.
MaxOrientationAccel	REAL	GSV/SSV	Maximum acceleration of
			the orientation axes of the
			coordinate system.
MaxOrientationDecel	REAL	GSV/SSV	Maximum deceleration of
IIdXUITEIIIdIIUIIDECEI			the orientation axes of the
TiaxonentationDecen			the orientation axes of the
HavonentationDecei			coordinate system.

Attribute	Data Type	Instruction	Meaning
SwingArmOffsetA3	REAL	GSV/SSV	The offset along the X-axis from the center of the bottom base plate to the Joint 4 frame for 5-axis Delta geometry.
SwingArmOffsetD3	REAL	GSV/SSV	The offset along the Z axis from the center of the bottom base plate to the Joint 4 frame for 5-Axis Delta geometry.
SwingArmOffsetA4	REAL	GSV/SSV	The offset along the X-axis J4 frame to the Joint 5 frame for 5-Axis Delta geometry.
SwingArmOffsetD4	REAL	GSV/SSV	The offset along the Z-axis J4 frame to the Joint 5 frame for 5-axis Delta geometry.
SwingArmOffsetD5	REAL	GSV/SSV	The offset along the Z-axis J5 frame to the EOA frame for 5-axis Delta geometry.
SwingArmCouplingRatioNumer ator	INT, DINT	GSV/SSV	The ratio of the rotation axis to the tilt axis.
SwingArmCouplingRatioDenom inator	INT, DINT	GSV/SSV	The ratio of the rotation axis to the tilt axis.
SwingArmCouplingDirection	INT, DINT	GSV/SSV	Relative direction of the coupled J4 rotational axis to the J5 tilt axis for Delta J1J2J3J4J5 Robot geometry.

Access the CST object

The coordinated system time (CST) object provides coordinated system time for the devices in one chassis.

Attribute	Data Type	Instruction	Description
CurrentStatus	INT	GSV	Current status of the
			coordinated system time. Each
			bit has a specific meaning:
			• 0. Timer hardware
			faulted. The internal
			timer hardware of the
			device is in a faulted
			state.
			• 1. Ramping enabled. The
			current value of the
			timer's lower 16+ bits

Attribute	Data Type	Instruction	Description
			ramp up to the requeste
			value, rather than snap t
			the lower value.
			• 2. System time master.
			The CST object is a
			master time source in th
			ControlLogix system.
			• 3. Synchronized.
			The CST object's
			64-bit CurrentValue is
			synchronized by master
			CST object via a system
			time update.
			4. Local network master.
			The CST object is the
			local network master
			time source.
			• 5. Relay mode. The CST
			object is acting in a time
			relay mode.
			6. Duplicate master
			detected. A duplicate
			local network time
			master is detected.
			This bit is always 0 for
			time-dependent nodes.
			• 7. Unused.
			8-9. 00. Time dependen
			node.
			• 01. Time master node.
			• 10. Time relay node.
			• 11. Unused.
			• 10-15. Unused.
CurrentValue	DINT[2]	GSV	Current value of the timer.
	TIME32[2]		DINT[0] contains the lower
	TIME		32; DINT[1] contains the uppe
			32 bits. The timer source is
			adjusted to match the value
			supplied in update services
			and from local communicatio
			network synchronization. The
			adjustment is either a rampir
			to the requested value or

Attribute	Data Type	Instruction	Description
			request value, as reported in
			the CurrentStatus attribute.

Access the DF1 object

The DF1 object provides an interface to the DF1 communication driver.

Attribute	Data Type	Instruction	Description
ACKTimeout	DINT	GSV	The amount of time to wait
			for an acknowledgment to
			a message transmission
			(point-to-point and master
			only). Valid value 0-32,767.
			Delay in counts of 20 msec
			periods. Default is 50 (1
			second).
Diagnostic	INT[19]	GSV	Array of diagnostic counter
Counters			for the DF1 communication
			driver.

Word offset		DF1 point-to-point	DF1 slaveMaster
0	Signature (0x0043)	Signature (0x0042)	Signature (0x0044)
1	Modem bits	Modem bits	Modem bits
2	Packets sent	Packets sent	Packets sent
3	Packets received	Packets received	Packets received
4	Undelivered packets	Undelivered packets	Undelivered packets
5	Unused	Messages retried	Messages retried
6	NAKs received	NAKs received	Unused
7	ENQs received	Poll packets received	Unused
8	Bad packets NAKed	Bad packets not ACKed	Bad packets not ACKed
9	No memory sent NAK	No memory not ACKed	Unused
10	Duplicate packets received	Duplicate packets received	Duplicate packets received
11	Bad characters received	Unused	Unused
12	DCD recoveries count	DCD recoveries count	DCD recoveries count

Word offset				DF1 point-to-p	oint	DF1 slaveMaste
13	Lost modem o	count		Lost modem co	Lost modem count	
14	Unused			Unused		Priority scan time maximum
15	Unused			Unused		Priority scan time last
16	Unused			Unused		Normal scan time maximum
17	Unused			Unused	·	Normal scant time last
18	ENQs sent			Unused		Unused
Duplicate Detection		SINT	GSV		Enables duplicat detection. Each specific meanin • 0. Duplicat detection c • Non zero. E detection e	value has a g: e message lisabled. Duplicate message
Embedded ResponseEnable	2	SINT	GSV		Each value has a • 0. Initiated received. T	led response int-to-point only). a specific meaning: only after one is his is the default. unconditionally.
EnableStoreFwd		SINT	GSV		meaning: • O. Do not fo • Non zero. S forward tal	
ENQTransmit Limit		SINT	GSV		The number of in to send after an (point-to-point o 0-127. Default se	ACK timeout only). Valid value
EOTSuppression	1	SINT	GSV		Enable suppress transmissions ir	

Word offset				DF1 point-to-poin	t	DF1 slaveMaster
					 a specific meanin 0. EOT suppl (disabled). Non zero. EC enabled. 	ression disabled IT suppression
ErrorDetection		SINT	GSV		Specifies the error scheme. Each val meaning: • 0. BCC. This • 1. CRC.	
MasterMessageTra	ınsmit	SINT	GSV		is the defaul • 1. In poll seq	ssion (master has a specific station polls. This t. uence. This ce of the station
MaxStation Address		SINT	GSV		Current value (O t maximum node a DH-485 network. 1	ddress on a
NAKReceiveLimit		SINT	GSV		The number of NA in response to a n before stopping tu (point-to-point co only). Valid value l is 3.	nessage ransmission mmunication
NormalPollGroupSi	ize	INT	GSV		Number of station normal poll node a all the stations in node array (master only). Valid value 0 to 25	array after polling the priority poll

Word offset			DF1 point-to-point	DF1 slaveMaster
PollingMode	SINT	GSV		lling mode (master only). tting is 1. Each value has
			a specific	meaning:
			• 0. Me	ssage-based, but
			don't	allow slaves to initiate
			mess	ages.
			• 1. Me	ssage-based, but allow
			slave	s to initiate messages.
			This	is the default.
			• 2. Sta	andard, single-message
			trans	fer per node scan.
			• 3. Sta	andard, multiple-message
			trans	fer per node scan.
ReplyMessage	DINT	GSV	The time (acting as a master) to
Wait				receiving an ACK before
				slave for a response
			(master or	nly). Valid value 0 to
			65,535. De	lay in counts of 20 msec
			periods. T	he default is 5 periods
			(100 msec).
SlavePollTimeout	DINT	GSV	The amou	nt of time in msecs that
				vaits for the master to
			poll before	e the slave declares that
				e to transmit because the
			master is	inactive (slave only). Valid
			value 0 to	32,767. Delay in counts
			of 20 mse	c periods. The default is
			3000 perio	ods (1 minute).
StationAddress	INT	GSV	Current st	ation address of the port.
				e O to 254. Default is O.
TokenHoldFactor	SINT	GSV	Current va	lue (1 to 4) of the
	SINT	031		number of messages
				is node before passing
				on a DH-485 network.
			Default is	
T	0.117	001/		
TransmitRetries	SINT	GSV		times to resend a
			-	vithout getting an
				Igment (master and slave
				l value O to 127. Default
			is 3.	
PendingACK Timeout	DINT	SSV	-	alue for the ACKTimeout
			attribute.	

Word offset			DF1 point-to-point	DF1 slaveMaster
Pending Duplicate Detection	SINT	SSV	Penc	ling value for the
			Dupl	icateDetection attribute.
Pending Embedded	SINT	SSV	Penc	ling value for the
ResponseEnable			Emb	eddedResponse attribute.
PendingEnable	SINT	SSV	Penc	ling value for the
StoreFwd			Enat	bleStoreFwd attribute.
PendingENQ TransmitLimit	SINT	SSV	Penc	ling value for the
			ENQT	TransmitLimit attribute.
PendingEOT Suppression	SINT	SSV	Penc	ling value for the
			EOTS	Suppression attribute.
PendingError	SINT	SSV	Pend	ling value for the
Detection			Erro	rDetection attribute.
PendingMaster Message Transmit	SINT	SSV	Penc	ling value for the
			Mast	erMessageTransmit attribute.
PendingMax	SINT	SSV	Penc	ling value for the
StationAddress			MaxS	StationAddress attribute.
PendingNAK ReceiveLimit	SINT	SSV	Penc	ling value for the
			NAKE	ReceiveLimit attribute.
PendingNormal	INT	SSV	Penc	ling value for the
PollGroupSize			Norn	nalPollGroupSize attribute.
PendingPolling	SINT	SSV	Penc	ling value for the PollingMode
Mode			attri	bute
PendingReply	DINT	SSV	Penc	ling value for the
MessageWait			Reply	yMessageWait attribute.
PendingSlavePollTimeout	DINT	SSV	Penc	ling value for the
			Slave	ePollTimeout attribute.
PendingStation	INT	SSV	Penc	ling value for the
Address			Stati	onAddress attribute.
PendingToken	SINT	SSV	Penc	ling value for the
HoldFactory			Toke	enHoldFactor attribute.
PendingTransmitRetries	SINT	SSV	Penc	ling value for the
			Tran	smitRetries attribute.

Access the FaultLog object

The FaultLog object provides fault information about the controller.

Attribute	Data Type	Instruction	Description
MajorEvents	INT	GSV SSV	The number of major faults
			that occurred since this
			counter was reset.

Attribute	Data Type	Instruction	Description
MajorFaultBits	DINT	GSV SSV	Individual bits indicate the
			reason for the current major
			fault. Each bit has a specific
			meaning:
			1 Power loss
			3 1/0
			4 Instruction execution
			(program)
			5 Fault Handler
			6 Watchdog
			7 Stack
			8 Mode change
			11 Motion
MinorEvents	INT	GSV SSV	The number of minor faults
			that occurred since this
			counter was reset.
MinorFaultBits	DINT	GSV SSV	Individual bits indicate the
			reason for the current mino
			fault. Each bit has a specific
			meaning:
			4 - Instruction execution
			(program)
			6 - Watchdog
			9 - Serial port
			10 - Energy Storage Module
			(ESM), or Uninterruptable
			Power Supply (UPS)
			20 - License/a required
			CodeMeter license is missin
			or missing.

Access the HardwareStatus object

The **HardwareStatus** object is used to obtain status information about the UPS, fans, and temperatures with GSV instructions for the CompactLogix 5480 controller projects. This object is supported in Ladder Diagram and Structured Text routines and in Add-On Instructions.

Attribute	Data Type	Data Type		Description
FanSpeeds	Array of:	Array of:		Speed of the fans.
	Number of Fans	SINT		If the number of fans supported by the product is zero, then the device does not support fans.

Attribute	Data Type		Instruction	Description
	Fan Speed	SINT[9] for 2 fans:		RPM
		SINT[0] = Number of		
		fans		
		SINT[1-4] = Fan #1		
		speed		
		SINT[5-8] = Fan #2		
		speed		
FanStatus	Array of:		GSV	Indicates whether the
lanotatuo	hirdy of			fan is faulted.
			-	
	Number of Fan Status	SINT		If the number of fans
	Indicators			supported by the
				product is zero, then
				device does not supp
			-	fan status.
	Fan Status	SINT[3] for 2 fans:		• 0. Fan is not
		SINT[0] = Number of		faulted
		fans		• 1. Fan is faulted
		SINT[1] = Fan #1 status		
		SINT[2] = Fan #2 status		
TemperatureFaultLevel	Array of:		GSV	The fault level in
				degrees Celsius
	Number of Temperature	SINT		If the number of
	Fault Level			temperature fault
				level is zero, then the
				device does not supp
				temperature fault lev
	Temperature Fault Level	SINT[3] for 1	-	Temperature in degre
	· · · · · · · · · · · · · · · · · · ·	temperature sensor:		Celsius
		SINT[0] = Number		000000
		Temperature Fault		
		Levels		
		SINT[1-2] =		
		Temperature Fault Level		
		#1		
Tomporaturas	Array of:		GSV	Temperature values i
Temperatures	Array of:		638	
			-	degrees Celsius
	Number of	SINT		If the number of
	Temperatures			temperatures suppor
				by product is zero, the
				the device does not
				support temperatures

Attribute	Data Type		Instruction	Description
	Temperature	SINT[3] for 1		Temperature in degree
		temperature sensor:		Celsius
		SINT[0] = Number of		
		Temperatures		
		SINT[1-2] =		
		Temperature #1		
UPSBatteryFailure	SINT		GSV	Indicates whether the
				UPS battery has failed.
				O. The connected
				UPS battery has detected no fault
				1. The connected
				UPS detected an
				issue with the
				connected batter
UPSBuffering	SINT		GSV	Indicates whether the
				UPS is providing power
				from the battery.
				• 0. UPS is not
				providing power
				from the battery.
				• 1. UPS is providing
				power from the
				battery.
UPSInhibited	SINT		GSV	Requests UPS to remov
				power.
				• 0. The controller
				does not want
				power to be
				removed at this
				time.
				• 1. UPS is to stop
				providing power.
UPSReady	SINT		GSV	Indicates whether the
or oncady	JINI		0.5 V	UPS is ready based on:
				charged >= 85%, no
				wiring failure, input
				voltage sufficient, and
				inhibit signal is inactiv
				O. UPS not ready
				1. UPS ready

Attribute	Data Type	Instruction	Description
UPSSupported	SINT	GSV	Indicates whether the
			UPS is supported.
			• 0. Not supported
_			• 1. Supported

Access the Message object

Access the Message object through the GSV/SSV instructions. Specify the message tag name to determine which Message object you want. The Message object provides an interface to setup and trigger peer-to-peer communications. This object replaces the MG data type of the PLC-5 processor.

Attribute	Data Type	Instruction	Description
ConnectionPath	SINT[82]	GSV SSV	Data to setup the connection path. The first two bytes (low byte and high byte) are the length in bytes of the connection path.
ConnectionRate	DINT TIME32	GSV SSV	Requested packet rate of the connection.
MessageType	SINT	GSV SSV	Specifies the type of message The value has a specific meaning: • 0. Not initialized
Port	SINT	GSV SSV	Indicates which port the message should be sent on. Each value has a specific meaning: • 1. Backplane. • 2. Serial port.
Timeout Multiplier	SINT	GSV SSV	 Determines when a connection should be considered timed out and closed. Each value has a specific meaning: 0. Connection times out in four times the update rate. This is the default. 1. Connection times out in eight times the update rate. 2. Connection times out in 16 times the update rate.

Attribute	Data Type	Instruction	Description
Unconnected	DINT	GSV SSV	Timeout in microseconds for
Timeout	TIME32		all unconnected messages.
			The default is 30,000,000
			microseconds (30 s).

Access the Module object

The Module object provides status information about a module. To select a particular Module object, set the Object Name operand of the GSV/SSV instruction to the module name. The specified module must be present in the I/O Configuration section of the controller organizer and must have a device name.

Attribute	Data Type	Instruction	Description
EntryStatus	INT	GSV	Specifies the current state
			of the specified map entry.
			The lower 12 bits should be
			masked when performing a
			comparison operation. Only
			bits 1215 are valid. Each valu
			has a specific meaning:
			• 16#0000. Standby. The
			controller is powering up
			• 16#1000. Faulted. Any
			of the Module object's
			connections to the
			associated module fail.
			This value should not be
			used to determine if the
			module failed because
			the Module object leaves
			this state periodically
			when trying to reconnec
			to the module. Instead,
			test for Running state
			(16#4000). Check for
			FaultCode not equal
			to 0 to determine if a
			module is faulted. When
			Faulted, the FaultCode
			and FaultInfo attributes
			are valid until the fault
			condition is corrected.
			• 16#2000. Validating.
			The Module object
			is verifying Module
			object integrity prior to

Attribute	Data Type	Instruction	Description
			establishing connection to the module. • 16#3000. Connecting. The Module object is initiating connections to the module. • 16#4000. Running. All connections to the module are established and data is transferring. • 16#5000. Shutting down. The Module object is in the process of shutting down all connections to the module. • 16#6000. Inhibited. The Module object is inhibite (the inhibit bit in the Module object is set). • 16#7000. Waiting. The parent object upon which this Module object depends is not running. • 16#9000. Firmware Updating. Firmware supervisor is attempting to flash the module. • 16#A000. Configuring. Controller is downloadin configuration to the module.
FaultCode	INT	GSV	A number that identifies a module fault, if one occurs.
FaultInfo	DINT	GSV	Provides specific information about the Module object fault code.
Firmware SupervisorStatus	INT	GSV	Identifies current operating state of the firmware

Attribute	Data Type	Instruction	Description
			 supervisor feature. Each value has specific meaning: 0. Module updates are no being executed. 1. Module updates are being executed.
ForceStatus	INT	GSV	Specifies the status of forces. Each bit has specific meaning • 0. Forces installed (1=yes 0-no). • 1. Forces enabled (1=yes, 0=no).
Instance	DINT	GSV	Provides the instance number of this module object.
LEDStatus	INT	GSV	 Specifies the current state of the I/O status indicator on the front of the controller.(1) Each value has a specific meaning: 0. Status indicator off: No Module objects are configured for the controller. (There are no modules in the I/O Configuration section of the controller organizer.) 1. Flashing red: None of the Module objects are Running. 2. Flashing green: At leas one Module object is not Running. 3. Solid green: All the Module objects are Running. You do not enter an object name with this attribute because this attribute applies to the entire collection of

Attribute	Data Type	Instruction	Description
Mode	INT	GSV SSV	Specifies the current mode of
			the Module object. Each bit has
			a specific meaning:
			• 0. If set, causes a major
			fault to be generated if
			any of the Module object
			connections fault while
			the controller is in Run
			mode.
			• 2. If set, causes the
			Module object to enter
			Inhibited state after
			shutting down all the
			connections to the
			module.
Path	SINT Array	GSV	Specifies the path to the
			module being referenced. This
			is a new attribute starting in
			version 24 software. Each byte
			has a specific meaning:
			• 0-1. Length of the path in
			bytes. If O, length of the
			SINT array is insufficient
			to hold the returned
			module path.
			If SINT array length is
			insufficient to hold the path,
			the array is zeroed out, and a
			minor fault is logged.

(1) The 1756-L7x controllers do not have a status indicator display on the front of the controller, but do use this functionality.

Related information

Module Faults: 16#0000 - 16#00ff on page 283
Module Faults: 16#0100 - 16#01ff on page 287
Module Faults: 16#0200 - 16#02ff on page 295
Module Faults: 16#0300 - 16#03ff on page 298
Module Faults: 16#0800 - 16#08ff on page 303
Module Faults: 16#fd00 - 16#fdff on page 303

Module Faults: 16#fe00 - 16#feff on page 305 Module Faults: 16#ff00 - 16#ffff on page 309

Access the Routine object

The Routine object provides status information about a routine. Specify the routine name to determine which Routine object that you want.

Attribute	Data Type	Instruction within Standard Task	Instruction within Safety Task	Description
Instance	DINT	GSV	GSV	Provides the instance number for this routine object. Valid values are 0 through 65,535.
Name	String	GSV	GSV	Name of the routine.
SFCPaused	INT	GSV	None	In an SFC routine, indicates whether the SFC is paused. Each value has a specific meaning: • 0. SFC is not paused. • 1. SFC is paused.
SFCResuming	INT	GSV SSV	None	 In an SFC routine, indicates whether the SFC is resuming execution. Each value has a specific meaning 0. SFC is not executing. This attribute is automatically set to 0 at the end of a scan in which the chart was executed. 1. SFC is executing Step and action timers will retain their previous value if configure to do so. This attribute is automatically

Attribute	Data Type	Instruction within Standard Task	Instruction within Safety Task	Description
				first scan after a
				chart is no longer
				paused.

Access the Redundancy object

The REDUNDANCY object provides status information about the redundancy system.

For This Information	Get This Attribute	Data Type	GSV/ SSV	Description	
Redundancy status	ChassisRedundancy	INT	GSV	lf	Then
of the entire chassis	State			16#2	Primary with synchronized secondary
				16#3	Primary with disqualified secondary
				16#4	Primary with no secondary
				16#10	Primary that's locked for update
Redundancy state	PartnerChassis	INT	GSV	lf	Then
of the partner chassis	RedundancyState			16#8	Synchronized secondary
			16#9	Disqualified secondary with primary	
				16#E	No partner
				16#12	Secondary that's locked for update
Redundancy status	ModuleRedundancy	INT	GSV	lf	Then
of the controller	State			16#2	Primary with synchronized secondary
				16#3	Primary with disqualified secondary
				16#4	Primary with no secondary

For This Information	Get This Attribute	Data Type	GSV/ SSV	Description	
				16#6	Primary with synchronizing secondary
				16#F	Primary that's locking for update
				16#10	Primary that's locked for update
Redundancy state	PartnerModule	INT	GSV	lf	Then
	RedundancyState			16#7	Synchronizing secondary
				16#8	Synchronized secondary
				16#9	Disqualified secondary with primary
				16#E	No partner
				16#11	Secondary that is locking for update
				16#12	Secondary that is locked for update
Results of the	CompatibilityResu	INT	GSV	lf	Then
compatibility	lts			0	Undetermined
checks with the partner controller				1	No compatible partner
				2	Fully compatible partner
Status of the	Qualification	INT	GSV	lf	Then
synchronization (qualification) process	InProgress			-1	Synchronization (qualification) is not in progress
				0	Unsupported
				1999	For modules that can measure their completion percentage, the percent of synchronization (qualification) that is complete

For This Information	Get This Attribute	Data Type	GSV/ SSV	Description	
				50	For modules that cannot measure their completion percentage, synchronization (qualification) is in progress Synchronization
					(qualification) is complete
Keyswitch settings	KeyswitchAlarm	DINT	GSV	lf	Then
of the controller and its partner match or do not match	d its partner atch or do not		0	One of the followin is true: The keyswitches match No partner is present	
				1	keyswitches do no match
Position of the	PartnerKeyswitch	DINT	GSV	lf	Then
keyswitch of the				0	Unknown
partner				1	RUN
				2	PROG
				3	REM
Status of the minor faults of	PartnerMinorFaults	DINT	GSV	This bit	Means this minor fault
the partner (if the				1	Power-up fault
ModuleRedundancy				3	I/O fault
State indicates a partner is present)				4	Problem with an instruction (program)
				6	Periodic task overlap (watchdog
				9	Problem with the serial port (not available for 1756-L7x projects)
				10	Low battery or issue with the

For This Information	Get This Attribute	bute Data Type	GSV/ SSV	Description		
					energy storage module	
Mode of the partner	PartnerMode	DINT	GSV	lf	Then	
				16#0	Power up	
				16#1	Program	
				16#2	Run	
				16#3	Test	
				16#4	Faulted	
				16#5	Run-to-program	
				16#6	Test-to-program	
				16#7	Program-to-run	
			16#8	Test-to-run		
				16#9	Run-to-test	
				16#A	Program-to-test	
				16#B	Into faulted	
				16#C	Faulted-to-program	
In a pair of	PhysicalChassisID	INT	GSV	lf	Then	
redundant chassis,				0	Unknown	
identification of a				1	Chassis A	
specific chassis without regard to the state of the chassis				2	Chassis B	
Slot number of the Redundancy module (for example, 1756-RM, 1756-RM2) in the chassis	SRMSlotNumber	INT	GSV			
Size of the last crossload Size of the last crossload if you had a secondary chassis	LastDataTransferS ize	DINT	GSV	was or would ha the last scan. The size in DINT You must config redundancy. You don't need a	The size in DINTs (4-byte words). You must configure the controller for redundancy. You don't need a secondary chassis. Is there a synchronized secondary	
				YES	This gives the number of	

For This	Get This Attribute	Data Type	GSV/ SSV	Description	
Information					
					DINTs that was
					crossloaded in the
					last scan.
				NO	This gives the
					number of DINTs
					that would have
					been crossloaded in
					the last scan
Size of the biggest	MaxDataTransferS	DINT	GSV	The size in DINTs (4-byte words).	
crossload	ize		SSV	You must configure t	he controller for
Size of the biggest				redundancy.	
crossload if you				You don't need a sec	ondary chassis.
had a secondary				To reset this value, u	se an SSV instruction
chassis				with a Source value of	of 0.
				Is there a synchroniz	ed secondary
				chassis?	
				YES	This gives the
					biggest number
					of DINTS that was
					crossloaded.
				NO	This gives the
					biggest number
					of DINTs that
					would have been
					crossloaded.

Access the Program object

The Program object provides status information about a program. Specify the program name to determine the Program object you want.

Attribute	Data Type	Instruction within Standard Task	Instruction within Safety Task	Description
DisableFlag	SINT	GSV SSV	None	Controls this program's execution. Each value has a specific meaning: • 0. Execution enabled. • Non zero. Execution disabled.

Attribute	Data Type	Instruction within Standard Task	Instruction within Safety Task	Description
	DINT	GSV	GSV	A non-zero value disables.
LastScanTime	DINT TIME32	GSV SSV	None	Time to execute program the last time it was executed. Time is in microseconds.
MaxScanTime	DINT TIME32	GSV SSV	None	Maximum recorded execution time for this program. Time is in microseconds.
MajorFault Record	DINT[11]	GSV SSV	GSV SSV	Records major faults for this program.
MinorFault Record	DINT[11]	GSV SSV	GSV SSV	Records minor faults for this program.
Name	String	GSV	GSV	Name of the program.

Tip: Rockwell Automation recommends creating a user-defined structure to simplify access to either Fault Record attribute:

Name	Data Type	Style	Description
Timestamp	LINT	Decimal	The time at which the fault occurred. Units are microseconds since Jan 1, 1970.
Туре	INT	Decimal	Fault type (program, I/O, and so forth)
Code	INT	Decimal	Unique code for the fault (depends on fault type)
Info	DINT[8]	Hexadecimal	Fault specific information (depends on fault type and code)

Access the MotionGroup object

The MOTIONGROUP object provides status information about a group of axes for the servo module. Specify the motion-group tag name to determine which MOTIONGROUP object you want.

Attribute	Data Type	Instruction	Description
Alternate1UpdateMultiplier	SINT, INT, or DINT	GSV	The update period for axes
			that are associated with the
			Alternate 1 Update Schedule.
Alternate1UpdatePeriod	DINT	GSV	The update period for axes
			that are associated with the
			Alternate 1 Update Schedule.
			Value is product of Alternate
			1 Update Period and Coarse
			Update Period.
Alternate2UpdateMultiplier	SINT, INT, or DINT	GSV	The update period for axes
			that are associated with the
			Alternate 2 Update Schedule.
Alternate2UpdatePeriod	DINT	GSV	The update period for axes
·			that are associated with the
			Alternate 2 Update Schedule.
			The value is product of
			Alternate 1 Update Period and
			Coarse Update Period.
AutoTagUpdate	SINT, INT, or DINT	GSV	Controls the automatic
		SSV	conversion and update of
			Motion Status attributes.
CoarseUpdatePeriod	DINT	GSV	The Coarse Update Period
·			commonly referred to as the
			Base Update Period.
Cycle Start Time	DINT[2]	GSV	This 64-bit value (ms)
	DT		corresponds to the Timer
	LINT		Event that starts the update
			cycle.
INSTANCE	DINT	GSV	The instance number of this
			MOTION_GROUP object
MaximumInterval	DINT[2]	GSV	The maximum interval
	TIME32[2]	SSV	between successive
	TIME		executions of this task.
MinimumInterval	DINT[2]	GSV	The minimum interval between
	TIME32[2]		successive executions of this
	TIME		task.
StartTime	DINT[2]	GSV	The value of Wall Clock Time
	DT		when the last execution of the
	LINT		task was started
TaskAveragelOTime	DINT	GSV	The Average motion task input
	TIME32	SSV	to output time, that is, the
			elapsed time from motion task

Attribute	Data Type	Instruction	Description
			start to send of connection
			data. (Time Constant = 250
			CUP)
TaskAverageScanTime	DINT	GSV	The average motion task scan
	TIME32	SSV	time. (Time Constant = 250
			CUP)
TaskLastIOTime	DINT	GSV	The last motion task input
	TIME32		to output time, that is, the
			elapsed time from motion task
			start to send of connection
			data.
TaskLastScanTime	DINT	GSV	The last motion task scan
	TIME32		time. (Elapsed Time)
TaskMaximumIOTime	DINT	GSV	The maximum motion task
	TIME32	SSV	input to output time, that
			is, the elapsed time from
			motion task start to send of
			connection data.
TaskMaximumScanTime	DINT	GSV	The maximum motion task
	TIME32	SSV	scan time. (Elapsed Time)
Time Offset	DINT[2]	GSV	The time offset value between
	TIME32[2]		Wall Clock Time and the local
	TIME		timer value for the controller
			associated with the current
			Cycle Start Time value.

Access the Message object

Access the Message object through the GSV/SSV instructions. Specify the message tag name to determine which Message object you want. The Message object provides an interface to setup and trigger peer-to-peer communications. This object replaces the MG data type of the PLC-5 processor.

Attribute	Data Type	Instruction	Description
ConnectionPath	SINT[82]	GSV SSV	Data to setup the connection path. The first two bytes (low byte and high byte) are the length in bytes of the connection path.
ConnectionRate	DINT TIME32	GSV SSV	Requested packet rate of the connection.

Attribute	Data Type	Instruction	Description
MessageType	SINT	gsv ssv	Specifies the type of message.
			The value has a specific
			meaning:
			• 0. Not initialized
Port	SINT	GSV SSV	Indicates which port the
			message should be sent on.
			Each value has a specific
			meaning:
			• 1. Backplane.
			• 2. Serial port.
Timeout	SINT	GSV SSV	Determines when a connection
Multiplier			should be considered timed
			out and closed. Each value has
			a specific meaning:
			• 0. Connection times out
			in four times the update
			rate. This is the default.
			• 1. Connection times out
			in eight times the update
			rate.
			• 2. Connection times out
			in 16 times the update
			rate.
Unconnected	DINT	GSV SSV	Timeout in microseconds for
Timeout	TIME32		all unconnected messages.
			The default is 30,000,000
			microseconds (30 s).

Access the Safety object

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

The Safety Controller object provides safety status and safety signature information. The SafetyTask and SafetyFaultRecord attributes can capture information about non-recoverable faults.

See the GuardLogix Controllers User Manual, publication 1756-UM020.

Attribute	Data Type	Instruction within Standard Task	Instruction within Safety Task	Description
SafetyLockedState	SINT	GSV	None	Indicates whether the
				controller is safety
				locked or unlocked.

	ſ	1	1	1
SafetySILConfiguration	SINT	GSV	None	Specifies the safety SIL configuration. • 2 - SIL2/PLd • 3 - SIL3/PLe
SafetyStatus	INT	GSV	None	Specifies the safety status. Each value has a specific meaning: : • 100000000000 000 – Safety task 0K. • 100000000000 001 – Safety task inoperable. • 0000000000000 000 – Partner missing. • 0000000000000 001 – Partner unavailable. • 0000000000000 010 – Hardware incompatible. • 0000000000000 011 – Firmware incompatible.
SafetySignature Exists	SINT	GSV	GSV	Indicates whether the safety task signature is present.
SafetySignature ID (Applicable to Compact GuardLogix 5370, and GuardLogix 5570 controllers only)	SINT	GSV	None	32-bit identification number.
SafetySignature (Applicable to Compact GuardLogix 5370, and GuardLogix 5570 controllers only)	String	GSV	None	32-bit identification number includes ID number plus date and time stamp.
SafetyTaskFault Record	DINT[11]	GSV	None	Records safety task faults.
SafetySignaturelDLong (Applicable to Compact GuardLogix 5380 and	SINT[33]	GSV	None	32 byte Safety signature ID in byte array. The 1st byte is the size of of the

GuardLogix 5580 controllers only) SafetySignatureIDHex (Applicable to Compact GuardLogix 5380 and GuardLogix 5580 controllers only)	String	GSV	None	safety signature ID in bytes and remaining 31 bytes is the signature ID. 64 character Hexadecimal string representation of signature ID
SafetySignatureDateT ime (Applicable to Compact GuardLogix 5380 and GuardLogix 5580 controllers only).	String	GSV	None	27 character date time of a safety signature in the format of mm/dd/yyyy, hh:mm:ss.iii <am or="" pm=""></am>

Access the Task object

The TASK object provides status information about a task. Specify the task name to determine which TASK object you want.

Attribute	Data Type	Instruction within Standard Task	Instruction within Safety Task	Description	
DisableUpdateOutp uts	DINT	gsv ssv	None	 Enables or disables the processing of outputs at the end of a task. Set the attribute to 0 to enable the processing of outputs at the end of the task. Set the attribute to 1 (or any non-zero value) to disable the processing of outputs at the end of the task. 	
EnableTimeOut	DINT	gsv ssv	None	 Enables or disables the timeout function of an event task. Set the attribute to 0 to disable the timeout function. Set the attribute to 1 (or any non-zero value) to enable the timeout function. 	
InhibitTask	DINT	GSV SSV	None	Prevents the task from executing. If a task is inhibited, the controller still prescans the task when the controller	

		Instruction within	Instruction within		
Attribute	Data Type	Standard Task	Safety Task	Description	
				 transitions from Program mode to Run or Test mode. Set the attribute to 0 to enable the task Set the attribute to 1 (or any non-zero value) to inhibit (disable) the task 	
Instance	DINT	GSV	GSV	Provides the instance number of this TASK object. Valid values are 031.	
LastScanTime	DINT TIME32	gsv ssv	None	Time it took to execute this program the last time it was executed. Time is in microseconds.	
MaxInterval	DINT[2] TIME32[2] TIME	gsv ssv	None	The maximum time interval between successive executions of the task. DINT[0] contains the lower 32 bits of the value; DINT[1] contains the upper 32 bits of the value. A value of 0 indicates 1 or less executions of the task.	
MaxScanTime	DINT TIME32	GSV SSV	None	Maximum recorded execution time for this program. Time is in microseconds.	
MinInterval	DINT[2] TIME32[2] TIME	gsv Ssv	None	The minimum time interval between successive executions of the task. DINT[0] contains the lower 32 bits of the value; DINT[1] contains the upper 32 bits of the value. A value of 0 indicates 1 or less executions of the task.	
Name	String	GSV	GSV	Name of the task.	
OverlapCount	DINT	gsv ssv	gsv Ssv	The number of times that the task was triggered while it was still executing. Valid for an event or periodic task. To clear the count, set the attribute to 0.	
Priority	INT	gsv ssv	GSV	Relative priority of this task as compared to the other tasks. Valid values 015.	
Rate	DINT	GSV SSV	GSV	The time interval between executions of the task. Time is in microseconds.	

Attribute	Data Type	Instruction within Standard Task	Instruction within Safety Task	Description	
		1			
StartTime	DINT[2] DT LINT	gsv Ssv	None	Value of WALLCLOCKTIME when the last execution of the task was started. DINT[0] contains the lower 32 bits of the value; DINT[1] contains the upper 32 bits of the value.	
Status	DINT	gsv Ssv	None	 Provides status information about the task. Once the controller sets one of these bits, you must manually clear it. To determine if: an EVENT instruction triggered the task (event task only), examine bit 0 a timeout triggered the task (event task only), examine bit 1 an overlap occurred for this task, examine bit 2 	
SynchronizeRedund ancyDataDisabled	DINT	GSV	None	Indicates if runtime tag crossloading for standard tasks is enabled in a redundancy application. • 0 indicates that tag crossloading for the standard tasks is enabled. • 1 indicates that tag crossloading for the standard tasks is disabled.	
Watchdog	DINT	gsv Ssv	GSV	Time limit for execution of all programs associated with this task. Time is in microseconds. If you enter 0, these values are assigned: Time: Task Type: 0.5 sec periodic 5.0 sec continuous	

Access the TimeSynchronize object

The TIMESYNCHRONIZE object provides a Common Industrial Protocol (CIP) interface to the IEEE 1588 (IEC 61588) Standard for a precision clock synchronization protocol for networked measurement and control systems. Access the TIMESYNCHRONIZE object through the GSV/SSV instructions.

For more information about this object, refer to the Deploying Scalable Time Distribution within a Converged Plantwide Ethernet Architecture Design Guide.

Attribute	Data Type	Instruction	Description	
ClockType	INT	GSV	The type of clock.	
			Bit	Type of Clock

Attribute	Data Type	Instruction	Description	
			0	Ordinary Clock
			1	Boundary Clock
			2	Peer-to-peer
				transparent clock
			3	End-to-end transparent clock
			4	Management Node
			All other bits are rese	erved.
CurrentTimeMicroseco	DINT[2]	GSV	Current value of Syst	em Time in microseconds.
nds	DT			
	LINT			
CurrentTimeNanoseco nds	LINT LDT	GSV	Current value of Syst	em Time in nanoseconds.
DomainNumber	SINT	GSV	The PTP clock domai	n. The value is between
			0255. The default is	s 0.
CurrentTimeMicroseco	LINT	GSV	Current value of Syst	em Time in microseconds.
nds	DINT			
CurrentTimeNanoseco	LINT	GSV	Current value of Syst	em Time in nanoseconds.
nds	LDT			
DomainNumber	SINT	GSV		n. The value is between
			0255. The default is	s 0.
GrandMasterClockInfo	Structure	GSV	Property information Requires 24 bytes of	about the grandmaster clock storage.
Grandmaster Clock Info	ormation structure:			
ClockIdentity	SINT[8]			
ClockClass	INT			
TimeAccuracy	INT	_		
OffsetScaledLogVaria	INT	_		
nce				
CurrentUtcOffset	INT			
TimePropertyFlags	INT	1		
TimeSource	INT	1		
Priority1	INT	1		
Priority2	INT	1		
IsSynchronized	DINT	GSV	Local clock is synchr	onized with a master.
			Value	Meaning
			0	Not synchronized
			1	Synchronized
LocalClockInfo	Structure	GSV	Property information	about the local clock.

Attribute	Data Type	Instruction	Description	
			Requires 20 byte	es of storage.
Local Clock Information	structure:	l		
ClockIdentity	SINT[8]			
ClockClass	INT			
TimeAccuracy	INT			
OffsetScaledLogVaria nce	INT			
CurrentUtcOffset	INT			
TimePropertyFlags	INT			
TimeSource	INT			
Manufactureldentity	DINT	GSV	The IEEE OVI (Or manufacturer.	ganization Unique Identity) for th
MaxOffsetFromMaster	LINT DINT	GSV / SSV	Maximum offset	from master in nanoseconds.
MeanPathDelayToMaster	LINT DINT	GSV	Average path de nanoseconds.	lay from master to local clock in
NumberOfPorts	INT	GSV	The number of p	orts of this clock.
OffsetFromMaster	LINT DINT	GSV		ifference between the local cloc clock, based on the most recent n nanoseconds.
PTPEnable	DINT	GSV / SSV	The enable statu Synchronization	is for CIP Sync/PTP/Time on the device.
			Value	Meaning
			0	Disable
			1	Enable
ParentClockInfo	Structure	GSV	Property informa Requires 16 byte	, ation about the parent clock. s of storage.
Parent Clock Informatio	n structure:			
ClockIdentity	SINT[8]			
PortNumber	INT			
ObservedOffsetScaledLo gVariance	INT			
ObservedPhaseChangeR ate	DINT			
PortEnableInfo	Structure	GSV	device.	configuration of each port on the f Enabled Ports x 4) :es

Attribute	Data Type	Instruction	Description
Port Enable status struc	cture:		· · ·
NumberOfPorts	INT		Maximum number of ports is 10.
Structure repeated for the	number of ports:		
PortNumber	INT		
PortEnable	INT		
PortLogAnnounceInterv	Structure	GSV	The interval between successive "Announce"
allnfo			messages issued by a master clock on each PTP
			port of the device.
			Size = 2 + (No. of Enabled Ports x 4)
			Maxsize = 42 bytes
Port Log Announce Inter	rval structure:		
NumberOfPorts	INT		Maximum number of ports is 10.
Structure repeated for the	e number of ports:		
PortNumber	INT		
PortLogAnnounceInter	INT		
val			
PortLogSyncIntervalInfo	Structure	GSV	The interval between successive Sync messages
			issued by a master on each PTP port of the devic
			Size = 2 + (No. of Enabled Ports x 4)
			Maxsize = 42 bytes
Port Log Sync Interval s	tructure:		
NumberOfPorts	INT		Maximum number of ports is 10.
Structure repeated for the	e number of ports:		
PortNumber	INT		
PortLogAnnounceInter	INT		
val			
PortPhysicalAddressInfo	Structure	GSV	The physical and protocol address of each port o
			the device.
			Size = 2 + (No. of Enabled Ports x 36)
			Maxsize = 362 byts
Port Physical Address s	tructure:		
NumberOfPorts	INT		Maximum number of ports is 10.
Structure repeated for the	e number of ports:		
PortNumber	INT		
Protocol	SINT[16]		
SizeOfAddress	INT		
Port Address	SINT[16]		
PortProfileIdentityInfo	Structure	GSV	Profile of each port of the device.
			Size = 2 + (No. of Enabled Ports x 10)

Attribute	Data Type	Instruction	Description
			Maxsize = 102
Port Profile Identity stru	icture:		
NumberOfPorts	INT		Maximum number of ports is 10.
Structure repeated for the	number of ports:	L	
PortNumber	INT		
ClockIdentity	SINT[8]		
PortProtocolAddressInfo	Structure	GSV	The network and protocol address of each port of
			the device.
			Size = 2 + (No. of Enabled Ports x 22)
			Maxsize = 222
Port Protocol Address s	tructure:		
NumberOfPorts	INT		Maximum number of ports is 10.
Structure repeated for the	e number of ports:		
PortNumber	INT		
NetworkProtocol	INT		
SizeOfAddress	INT		
PortAddress	SINT[16]		
PortStateInfo	Structure	GSV	The current state of each PTP port on the device.
			Size = 2 + (No. of Enabled Ports x 4)
			Maxsize = 42 bytes
Port State structure:			
NumberOfPorts	INT		Maximum number of ports is 10.
Structure repeated for the	e number of ports:		
PortNumber	INT		
PortState	INT		
Priority1	SINT	GSV / SSV	Priority1 (Master Override) value for the local clock
			Note: Value is Unsigned.
Priority2	SINT	GSV / SSV	Priority2 (Tie Breaker) value for the local clock.
			Note: Value is Unsigned.
ProductDescription	Structure	GSV	Product description of the device that contains the
			clock.
			Requires 68 bytes of storage.
Product Description str	ucture:		
Size	DINT		
Description	SINT[64]		
RevisionData	Structure	GSV	Revision data of the device that contains the
			clock.

Requires 36 bytes of storage.

Attribute	Data Type	Instruction	Description
Revision Data structur	e:	·	
Size	DINT		
Revision	SINT[32]		
StepsRemoved	INT	GSV	The number of CIP Sync Regions between the local clock and the grandmaster (that is, the number of boundary clocks +1)
SystemTimeAndOffset	Structure	GSV	System time in microseconds and the offset to the local clock value.
System Time and Offse	et structure:		
SystemTime	LINT DINT		
SystemOffset	LINT DINT		
UserDescription	Structure	GSV	User description of the device that contains the clock. Requires 132 bytes of storage.
User Description struc	ture:	1	
Size	DINT		

Access the WallClockTime object

The WallClockTime object provides a timestamp that the controller can use for scheduling.

SINT[128]

Description

Tip: Setting the WALLCLOCKTIME object is limited to no more than one update every 15 seconds.

IMPORTANT: To ensure proper time is read using the GSV instruction, include the WALLCLOCKTIME GSV in only one user task.

IMPORTANT: To ensure proper time is read using the GSV instruction, place the UID/UIE instruction pair around the WALLCLOCKTIME GSV instances in user tasks that can be interrupted by WALLCLOCKTIME GSV instances in other tasks. No UID/UIE pair is required when the WALLCLOCKTIME GSV exists in only one user task.

IMPORTANT:

When disabling PTP on a controller, to give the controller time to process the disable, use a twosecond delay before setting the WallClockTime (WCT) in the controller. Otherwise, there is a risk of the grandmaster clock overwriting the WCT.

Attribute	Data Type	Instruction	Description
ApplyDST	SINT	GSV SSV	Identifies whether to enable daylight savings time. Each value has a specific meaning: • 0. Do not adjust for daylight savings time. • Non zero. Adjust for daylight savings time.
CSTOffset	DINT[2] TIME32[2] TIME	GSV SSV	Positive offset from the CurrentValue of the CST object (coordinated system time). Value in microseconds. The default is 0.
CurrentValue	DINT[2] DT LINT	GSV SSV	Current value of the wall clock time. The number of microseconds elapsed since 0000 hours 1 January 1970. Note: You can set this value to no later than 12/29/2068. The CST and WALLCLOCKTIME objects are mathematically related in the controller. For example, if adding the CST CurrentValue and the WALLCLOCKTIME CSTOffset, the result is the WALLCLOCKTIME CurrentValue
DateTime	DINT[7] DATETIMESTRUCT	gen sen	The date and time. Each valuehas a specific meaning:• DINT[0]. Year• DINT[1]. Month (112)• DINT[2]. Day (131)• DINT[2]. Day (131)• DINT[3]. Hour (023)• DINT[4]. Minute (059)• DINT[5]. Seconds (059)• DINT[6]. Microseconds (099,999)

Attribute	Data Type	Instruction	Description
DSTAdjustment	INT	GSV SSV	The number of minutes to
			adjust for daylight saving time.
LocalDateTime	DINT[7]	GSV SSV	Current adjusted local time.
	DATETIMESTRUCT		Each value has a specific
			meaning:
			• DINT[0]. Year
			• DINT[1]. Month (112)
			• DINT[2]. Day (131)
			• DINT[3]. Hour (023)
			• DINT[4]. Minute (059)
			• DINT[5]. Seconds (059)
			• DINT[6]. Microseconds
			(0999,999)
TimeZoneString	INT	GSV SSV	Time zone for the time value.

Determine Controller Memory Information

This is information is not applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers. In these controllers, the memory used attributes are not supported or accesible.

The memory of the controller is divided into I/O memory and expansion memory. This table shows how the controller uses each type of memory:

This	Uses memory from
I/O tags	I/O memory
produced tags	
consumed tags	
communication via MSG instructions	
communication with workstations	
tags other than I/O, produced, or consumed tags	expansion memory
logic routines	
communication with polled (OPC/DDE) tags that	I/O memory and expansion memory
use RSLinx Classic.	

Note that the controller returns values in the number of 32-bit words. To see a value in bytes, simply multiply by 4.Use this procedure to get the following information about the controller's memory:

- available (free) I/O and expansion memory
- total I/O and expansion memory
- largest contiguous block of I/O and expansion memory

Get Memory Information From the ControllerTo get memory information from the controller, execute a Message (MSG) instruction that is configured as follows:From the Message Properties dialog - Configuration tab:

For this item:	Type or select	Which means:			
Message Type	CIP Generic	Execute a Control and Information Protocol command.			
Service Type	Custom	Create a list.	CIP Generic message that is not available in the drop-down		
Service Code	3		GetAttributeList service. This lets you read specific ion about the controller.		
Class	72	Get infor	mation from the user memory object.		
Instance	1	This obje	ct contains only 1 instance.		
Attribute	0	Null valu	e		
Source Element	source array of type SINT[12]				
	In this element	Enter	Which means:		
	source_array[0]	5	Get 5 attributes		
	source_array[1]	0	Null value		
	source_array[2]	1	Get free memory		
	source_array[3]	0	Null value		
	source_array[4]	2	Get total memory		
	source_array[5]	0	Null value		
	source_array[6]	5	Get largest contiguous block of additional free expansion memory		
	source_array[7]	0	Null value		
	source_array[8]	6	Get largest contiguous block of free I/O memory		
	source_array[9]	0	Null value		
	source_array[10]	7	Get largest contiguous block of free expansion memory		
	source_array[11]	0	Null value		
Source Length	12	Write 12	bytes (12 SINTs).		
Destination	INT array of type INT[2]	ə]			

From the Message Properties dialog - Communication tab:

For this item:	Type or select	Which means:		
Message Type	CIP Generic	Execute a Control and Information Protocol command.		
Service Type	Custom	Create a list.	CIP Generic message that is not available in the drop-down	
Service Code	3	Use the GetAttributeList service. This lets you read specific information about the controller.		
Class	72	Get infor	mation from the user memory object.	
Instance	1	This obje	ct contains only 1 instance.	
Attribute	0	Null valu	e	
Source Element	source_array of type SINT[12]			
	In this element	Enter.	Which means:	
	source_array[0]	5	Get 5 attributes	
	source_array[1]	0	Null value	
	source_array[2]	1	Get free memory	
	source_array[3]	0	Null value	
	source_array[4]	2	Get total memory	
	source_array[5]	0	Null value	
	source_array[6]	5	Get largest contiguous block of additional free expansion memory	
	source_array[7]	0	Null value	
	source_array[8]	6	Get largest contiguous block of free I/O memory	
	source_array[9]	0	Null value	
	source_array[10]	7	Get largest contiguous block of free expansion memory	
	source_array[11]	0	Null value	
Source Length	12	Write 12	bytes (12 SINTs).	
Destination	INT array of type INT[2]	9]		

Choose the Memory Information You WantThe MSG instruction returns the following information to INT_array (the destination tag of the MSG instruction).

IMPORTANT: For a 1756-L55M16 controller, the MSG instruction returns two values for each expansion memory category. To determine the free or total expansion memory of a 1756-L55M16 controller, add both values for the category.

If you want the:	Then copy these array elements:	Description:
amount of free I/O memory (32-bit words)	INT_array[3]	lower 16 bits of the 32 bit value
	INT_array[4]	upper 16 bits of the 32 bit value
amount of free expansion memory (32-bit words)	INT_array[5]	lower 16 bits of the 32 bit value
	INT_array[6]	upper 16 bits of the 32 bit value
1756-L55M16 controllers only—amount of additional free	INT_array[7]	lower 16 bits of the 32 bit value
expansion memory (32-bit words)	INT_array[8]	upper 16 bits of the 32 bit value
total size of I/O memory (32-bit words)	INT_array[11]	lower 16 bits of the 32 bit value
	INT_array[12]	upper 16 bits of the 32 bit value
total size of expansion memory (32-bit words)	INT_array[13]	lower 16 bits of the 32 bit value
	INT_array[14]	upper 16 bits of the 32 bit value
1756-L55M16 controllers only—additional expansion	INT_array[15]	lower 16 bits of the 32 bit value
memory (32-bit words)	INT_array[16]	upper 16 bits of the 32 bit value
1756-L55M16 controllers only—largest contiguous block of	INT_array[19]	lower 16 bits of the 32 bit value
additional free expansion memory (32-bit words)	INT_array[20]	upper 16 bits of the 32 bit value
largest contiguous block of free I/O memory (32-bit words)	INT_array[23]	lower 16 bits of the 32 bit value
	INT_array[24]	upper 16 bits of the 32 bit value
largest contiguous block of free expansion memory	INT_array[27]	lower 16 bits of the 32 bit value
(32-bit words)	INT array[28]	upper 16 bits of the 32 bit value

Convert INTs to a DINTThe MSG instruction returns each memory value as two separate INTs.

- The first INT represents the lower 16 bits of the value.
- The second INT represents the upper 16 bits of the value.

To convert the separate INTs into one usable value, use a Copy (COP) instruction, where:

In this operand:	Specify:	Which means:
Source	first INT of the 2 element pair (lower 16	Start with the lower 16 bits
	bits)	
Destination	DINT tag in which to store the 32-bit value	Copy the value to the DINT tag
Length	1	Copy 1 times the number of bytes in the
		Destination data type. In this case, the
		instruction copies 4 bytes (32 bits), which
		combines the lower and upper 16 bits into
		one 32-bit value.

DeviceNet Status Codes

The following are the DeviceNet Status Codes.

Status Code	Description of Status	Recommended Action
0-63	DeviceNet node address of scanner or	None.
	slave device.	
65	The AutoScan option is on and the	None.
	scanner is in idle mode.	
67	Scanner is Secondary scanner.	None.
68	Primary scanner has detected no	Configure another scanner to be the
	Secondary scanner.	Secondary scanner.
69	Primary and Secondary configurations	Check configuration of the Secondary
	are mismatched.	scanner.

Status Code	Description of Status	Recommended Action
70	The address of the scanner is already in	Change the address of the scanner to an
	use by another device on the network.	unused address.
71	Invalid data in scan list.	Use RSNetWorx software to reconfigure
		the scan list.
72	Slave device stopped communicating. If communication is not reestablished with the slave device during the next attempt, status code will change to 78.	 Verify slave device's power and network connections. If slave device is polled, verify that interscan delay time is adequate for the device to return data. Verify that slave device is functioning properly.
73	Slave device's identity information does not match electronic key in scanner.	 Make sure that the correct slave device is connected at this address. Make sure that the slave device matches the specified electronic key (vendor, product code, product type). Verify that slave device is functioning properly.
74	Scanner detected data overrun on DeviceNet communication port.	 Check network communication traffic. Verify that slave device is functioning properly.
75	 Either or both of the following are present. The scanner does not have a scan list. The scanner has not received communication from any other device. 	 Verify that the scanner has the following. A configured scan list. A properly-wired connection to the network.
76	No direct network traffic for scanner. The scanner hears other network communication but does not hear any directed to it.	None.
Π	During initialization, the data size expected by the slave device does not match the size in the corresponding scan list entry.	 Use RSNetWorx software to check the slave device and the scan list for the correct input and output sizes for the slave device. Verify that slave device is functioning properly.
78	Slave device is configured in scan list, but is not communicating.	 Verify slave device's power and network connections. If the slave device is polled, make sure the interscan delay is long

Chapter 4 Input/Output Instructions

Status Code	Description of Status	Recommended Action
		 enough for the slave device to return its data. If needed, use RSNetWorx software to perform the following. Add the slave device to the DeviceNet network. Delete the slave device from scanner's scan list. Inhibit the slave device in the scanner's scan list. Verify that slave device is functioning properly.
79	Scanner has failed to transmit a message.	 Make sure that the scanner is connected to a valid network. Check for disconnected cables. Verify network baud rate.
80	Scanner is in idle mode.	 If desired, put scanner in run mode by doing the following. Putting the controller in run/remote run mode using the keyswitch on the controller or through the Logix Designer application AND Turning on bit 0.CommandRegister.Run for the scanner.
81	Controller has set the scanner to faulted mode.	Bit O.CommandRegister.Fault for the scanner is on. Correct condition that

Status Code	Description of Status	Recommended Action		
		caused controller to set this bit and then		
		turn this bit off.		
82	Error detected in sequence of fragmented	 Use RSNetWorx software to perform the following. Check scan list entry for the slave device to make sure that its input and output data sizes are correct. Check the configuration of the slave device. Verify that slave device is functioning properly. 		
83	Slave device returns error responses when the scanner attempts to communicate with it.	 Use RSNetWorx software to perform the following. Check the accuracy of the scan list. Check the configuration of the slave device. The slave device may be in another scanner's scan list. Cycle power to the slave device. Verify that slave device is functioning properly. 		
84	Scanner is initializing the DeviceNet network.	None. This code clears itself once the scanner attempts to initialize all the slave devices on the network.		
85	During runtime, the data size sent by the slave device does not match the size in the corresponding scan list entry.	Since variable length poll data is not supported, verify that the slave device is functioning properly.		
86	The slave device is in idle mode or not producing data while the scanner is in run mode.	 Check the configuration and status of the slave device. If you set up a master/slave relationship between 2 scanners, make sure both scanners are in run mode. 		
87	Scanner cannot listen to shared inputs from slave device because the owning scanner has not established communication with that slave device.	 Verify the owning scanner connection and configuration. Slave device may not be producing data. 		
88	Scanner cannot listen to shared inputs from slave device because I/O parameters (for example, polled or strobed, electronic key, data size) for that	In this scanner, reconfigure the I/O parameters for the shared inputs scan list entry so that they match those same parameters in the owning scanner.		

Chapter 4 Input/Output Instructions

Status Code	Description of Status	Recommended Action
	slave device are configured differently between this scanner and the owning scanner.	
89	Scanner failed to configure a slave device using the Automatic Device Recovery (ADR) parameters.	Make sure that you installed a compatible slave device.
90	Controller has set the scanner to disabled mode.	If desired, enable the scanner by turning off bit O.CommandRegister.DisableNetwork for the scanner.
91	Bus-off condition likely due to cable or signal errors.	 Cycle power to the scanner, slave device(s), and/or network. Verify that all devices are set to the same baud rate. Check DeviceNet cabling to make sure no short circuits exist between CAN (blue and white) wires and power or shield (black, red, and shield) wires. Check the media system for the following noise sources. Device located near high-voltage power cable. Incorrect or no termination resistor used. Improper grounding.
92	DeviceNet cable not supplying power to the scanner's communication port.	 Verify the network's 24V dc power supply is operating properly. Verify good cable condition. Check cable connections to the scanner.
95	The scanner's firmware is being updated or a configuration is being downloaded.	None. Do not disconnect the scanner while the update is in process, otherwise existing data in scanner memory will be lost.
97	The controller has placed the scanner in halt mode.	Bit 0.CommandRegister.HaltScanner for the scanner is on. Turn this bit off and then cycle scanner power.
98	General firmware error.	Replace device.
		1

Get and Set System Data

The controller stores system data in objects. There is no status file, as in the PLC-5 controller. Use the GSV/SSV instructions get and set controller system data that is stored in objects:

- The GSV instruction retrieves the specified information and places it in the destination.
- The SSV instruction sets the specified attribute with data from the source.

Attention: Use the SSV instruction carefully. Making changes to objects can cause unexpected controller operation or injury to personnel.

To get or set a system value:

- 1. Open the Logix Designer application project.
- 2. From the **Help** menu, click **Contents**.
- 3. Click Index.
- 4. Type gsv/ssv objects and click Display.
- 5. Click the required object.

To get or set	Click
axis of a servo module	AXIS
system overhead time slice	CONTROLLER
physical hardware of a controller	CONTROLLERDEVICE
coordinated system time for the devices in one chassis	CST
fault history for a controller	FAULTLOG
attributes of a message instruction	MESSAGE
status, faults, communication path, and mode of a module	MODULE
group of axes	MOTIONGROUP
fault information or scan time for a program	PROGRAM
instance number of a routine	ROUTINE
properties or elapsed time of a task	TASK
wall clock time of a controller	WALLCLOCKTIME
time synchronization status of a controller	TIMESYNCHRONIZE

- 6. In the list of attributes for the object, identify the attribute that you want to access.
- 7. Create a tag for the value of the attribute.

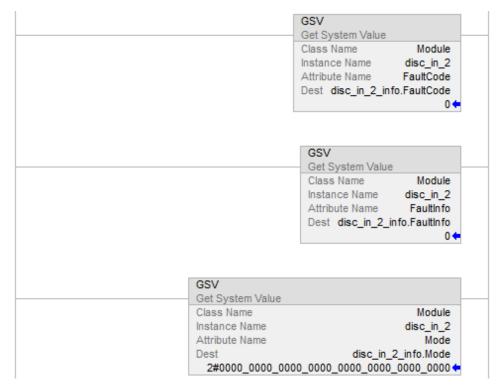
If the data type of the attribute is	Then	
one element (e.g., DINT)	Create a tag for the attribute.	
more than one element (e.g., DINT[7])	Create a user-defined data type that matches the	
	organization of data used by the attribute. Then create a	
	tag for the attribute and use the data type you created.	

8. In your ladder logic routine, enter the appropriate instruction.

То	Enter this instruction
get the value of an attribute	GSV
set the value of an attribute	SSV

9. Assign the required operands to the instruction.

Refer to the GSV/SSV instruction for information on these operands.


GSV/SSV Programming Example

The following examples use GSV instruction to get fault information.

Example 1: Getting I/O Fault Information

This example gets fault information from the I/O module disc_in_2 and places the data in a user-defined structure disc_in_2_info.

Ladder Diagram

Structured Text

GSV(MODULE,disc_in_2,FaultCode,disc_in_2_info.FaultCode);

GSV(MODULE,disc_in_2,FaultInfo,disc_in_2_info.FaultInfo);

GSV(MODULE,disc_in_2,Mode,disc_in_2_info.Mode);

Example 2: Getting Program Status Information

This example gets status information about program discrete and places the data in a user-defined structure discrete_info.

Ladder Diagram

GSV		GSV	
Get System Value		Get System Value	
Class Name	Program	Class Name	Program
Instance Name	THIS	Instance Name	THIS
Attribute Name LAS	STSCANTIME	Attribute Name MA	AXSCANTIME
Dest discrete_info.L	Dest discrete_info.LastScanTime		/axScanTime
_	49 🗲	_	4500 🗲

Structured Text

GSV(PROGRAM, DISCRETE, LASTSCANTIME, discrete_info.LastScanTime);

GSV(PROGRAM,DISCRETE,MAXSCANTIME,discrete_info.MaxScanTime);

Example 3: Getting Task Status Information

This example gets status information about task IO_test and places the data in a user-defined structure io_test_info.

Ladder Diagram

GSV	GSV	GSV
Get System Value	Get System Value	Get System Value
Class Name Task	Class Name Task	Class Name Task
Instance Name THIS	Instance Name THIS	Instance Name THIS
Attribute Name LastScanTime	Attribute Name MaxScanTime	Attribute Name WatchDog
Dest io_test_info.LastScanTime	Dest io_test_info.MaxScanTime	Dest io_test_info.WatchDog
2998 🖛	6847 4	5000 <

Structured Text

GSV(TASK,IO_TEST,LASTSCANTIME,io_test_info.LastScanTime);

GSV(TASK,IO_TEST,MAXSCANTIME,io_test_info.MaxScanTime);

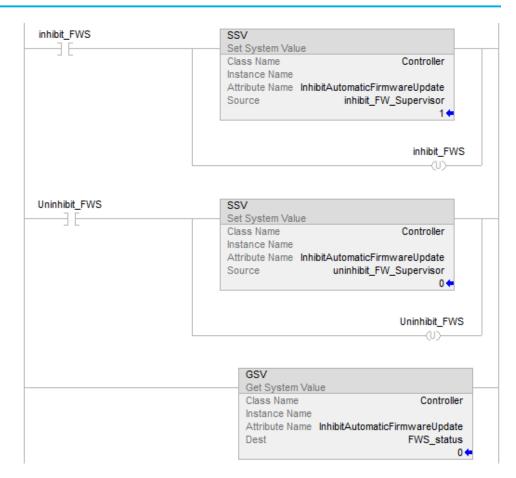
GSV(TASK,IO_TEST,WATCHDOG,io_test_info.Watchdog);

Setting Enable and Disable Flags

The following example uses the SSV instruction to enable or disable a program. You could also use this method to enable or disable an I/O module, which is a program solution similar to using inhibit bits with a PLC-5 processor.

Based on the status of SW.1, place the appropriate value in the disable flag attribute of program discrete.

Ladder Diagram


Structured Text

IF SW.1 THEN
discrete_prog_flag := enable_prog; ELSE
discrete_prog_flag := disable_prog;
END_IF;
SSV(PROGRAM,DISCRETE,DISABLEFLAG,discrete_prog_flag);

Inhibiting and Uninhibiting FirmwareSupervisor Automatic Firmware Update

The following example uses the GSV/SSV instruction to inhibit or uninhibit the Automatic Firmware Update attribute of the controller. If you write a value of 1, it inhibits the feature. If you write a value of 0, the feature is uninhibited. The status of the attribute can also be read with a GSV.

Ladder Diagram

GSV/SSV Objects

When entering a GSV/SSV instruction, specify the object and its attribute to access. In some cases, there will be more than one instance of the same type of object. Be sure to specify the object name. For example, each task has its own TASK object that requires specifying the task name to gain access.

IMPORTANT: The SSV attributes must be uploaded to be saved to the project.

IMPORTANT: For the GSV instruction, only the specified size of data is copied to the destination. For example, if the attribute is specified as a SINT and the destination is a DINT, only the lower 8 bits of the DINT destination are updated, leaving the remaining 24 bits unchanged.

IMPORTANT: The alarm buffer was removed from the subscription functions for alarming in the v21 firmware, and is no longer available. GSV instructions that previously referenced the alarm buffer attribute are invalidated when verifying the project. It is the responsibility of the programmer to correctly change any application code that relied on this attribute.

These are the GSV/SSV objects. The objects available for access are dependent on the controller.

- AddOnInstructionDefinition on page 196
- Axis on page 200

- Controller on page 212
- ControllerDevice on page 215
- CoordinateSystem on page 219
- CST on page 224
- DF1 on page 226
- FaultLog on page 230
- HardwareStatus on page 231
- Message on page 234
- Module on page 234
- MotionGroup on page 245
- Program on page 244
- Redundancy on page 240
- Routine on page 239
- Safety on page 248
- Task on page 250
- TimeSynchronize on page 252
- WallClockTime on page 257

GSV/SSV Safety Objects

For safety tasks, the GSV and SSV instructions are more restricted.

Tip: SSV instructions in safety and standard tasks cannot set bit 0 (major fault on error) in the mode attribute of a safety I/O module.

For safety objects, the following table shows which attributes you can get values for using the GSV instruction and which attributes you can set using the SSV instruction in safety and standard tasks.

WARNING: CAUTION: Use the GSV/SSV instructions carefully. Making changes to objects can cause unexpected controller operation or injury to personnel.

Safety Object	Attribute Name	Attribute Description	Accessible from the Safety Task		Accessible from the Standard Task	
			GSV	SSV	GSV	SSV
Safety Task	Instance	Provides	1		1	
		instance				
		number of this				
		task object.				
		Valid values are				
		031.				
	MaximumInter	The max time			1	~
	val	interval between				
		successive				

Safety Object	Attribute Name	Attribute	Accessible from	the Safety Task	Accessible from Task	the Standard
		Description		-		
		executions of				
		this task.				
	MaximumScanT	Max recorded			1	1
	ime	execution time				
		(ms) for this				
		task.				
	MinimumInterval	The min time			1	1
		interval between				
		successive				
		executions of				
		this task.				
	Priority	Relative priority	1		1	
		of this task as				
		compared to				
		other tasks.				
		Valid values are				
		015.				
	Rate	Period for the	1		1	
		task (in ms), or				
		timeout value				
		for the task (in				
		ms).				
	Watchdog	Time limit	1		1	
		(in ms) for				
		execution of				
		all programs				
		associated with				
		this task.				
	DisableUpdateO	Enables or			1	
	utputs	disables the				
		processing of				
		outputs at the				
		end of a task.				
		Set the				
		attribute				
		to O to				
		enable the				
		processing				
		of outputs				
		at the end				
		of the task.				

		Attribute			Accessible from	the Standard
Safety Object	Attribute Name	Description	Accessible from	the Safety Task	Task	
		Set the				
		attribute				
		to 1 (or any				
		non-zero				
		value) to				
		disable the				
		processing				
		of outputs				
		at the end				
		of the task.				
	EnableTimeOut	Enables or			1	
		disables the				
		timeout function				
		of a task.				
		• Set the				
		attribute				
		to O to				
		disable the				
		timeout				
		function.				
		Set the				
		attribute				
		to 1 (or any				
		non-zero				
		value) to				
		enable the				
		timeout				
		function.				
	InhibitTask	Prevents the			1	
		task from				
		executing. If a				
		task is inhibited,				
		the controller				
		still prescans				
		the task when				
		the controller				
		transitions from				
		Program mode				

		Attribute			Accessible from	the Standard
Safety Object	Attribute Name	Description	Accessible from the Safety Task		Task	
		to Run or Test				
		mode.				
		Set the				
		attribute to				
		0 to enable				
		the task				
		• Set the				
		attribute				
		to 1 (or any				
		non-zero				
		value) to				
		inhibit				
		(disable)				
		the task				
	LastScanTime	Time it took to			1	
		execute this				
		program the				
		last time it				
		was executed.				
		Time is in				
		microseconds.				
	Name	The name of the				
		task				
	OverlapCount	The number			1	
		of times that				
		the task was				
		triggered while				
		it was still				
		executing. Valid				
		for an event or				
		periodic task.				
		To clear the				
		count, set the				
		attribute to 0.				
	StartTime	Value of			1	
		WALLCLOCKTIME				
		when the last				
		execution of				
		the task was				
		started. DINT[0]				
		contains the				
		lower 32 bits				

Safety Object	Attribute Name	Attribute Description	Accessible from	the Safety Task	Accessible from Task	the Standard
		of the value; DINT[1] contains the upper 32				
		bits of the value.				
	Status	Provides status			~	
		information				
		about the				
		task. Once the				
		controller sets				
		one of these				
		bits, you must				
		manually clear				
		it.				
		To determine if:				
		an EVENT				
		instruction				
		triggered				
		the task				
		(event				
		task only),				
		examine				
		bit O				
		• a timeout				
		triggered				
		the task				
		(event				
		task only),				
		examine				
		bit 1				
		an overlap				
		occurred				
		for this				
		task,				
		examine				
		bit 2				
Safety Program	Instance	Provides	1		~	
		the instance				
		number of the				
		program object.				
	MajorFaultRec	Records major	1	1	~	
	ord	faults for this				
		program.				

Safety Object	Attribute Name	Attribute	Accessible from the Safety Task		Accessible from	the Standard
	Description			Task		
	MaximumScanT	Max recorded			~	~
	ime	execution time				
		(ms) for this				
		program.				
	Disable Flag	Controls this			~	
		program's				
		execution.				
		Each value				
		has a specific				
		meaning:				
		• 0.				
		Execution				
		enabled.				
		• Non zero.				
		Execution				
		disabled.				
	MaximumScanT	Maximum			1	
	ime	recorded				
		execution time				
		(ms) for this				
		program.				
	Minor Fault	Records minor			~	
	Record	faults for this				
		program.				
	LastScanTime	Time it took to			~	
		execute this				
		program the				
		last time it				
		was executed.				
		Time is in				
		microseconds.				
	Name	The name of the				
		task.				
Safety Routine	Instance	Provides	V			<u> </u>
		the instance				
		number for this				
		routine object.				
		Valid values are				
		065,535.				
Safety	SafetyLockedSt	Indicates			1	
Controllers	ate (SINT)	whether the				
		controller is				

Safety Object	Attribute Name	Attribute Description	Accessible from the Safety Task	Accessible from the Standard Task
		safety-locked or		
		-unlocked.		
	SafetySILConfig	Specifies the	× .	1
	uration (SINT)	safety SIL		
		configuration		
		as:		
		• 2 =		
		SIL2/PLd		
		• 3 =		
		SIL3/PLe		
	SafetyStatus	Applications		1
	(INT)	configured		
	(Applicable	for SIL3/PLe,		
	to Compact	specify the		
	GuardLogix	safety status as:		
	5380 and	• Safety		
	GuardLogix 5580	task OK.		
	controllers only).	(110000000		
		0000000)		
		• Safety task		
		inoperable.		
		(110000000		
		0000011)		
		• Partner		
		missing.		
		(01000000		
		0000000		
		00)		
		• Partner		
		unavailab		
		le.		
		(01000000		
		0000000		
		01)		
		• Hardware		
		incompati		
		ble		
		(01000000		
		0000000		
		10)		
		• Firmware		
		incompatib		

Safety Object	Attribute Name	Attribute Description	Accessible from the Safety Task	Accessible from the Standard
		le.		
		(01000000		
		000000011)		
		Tip: For		
		applications		
		configured		
		for SIL2/PLd,		
		bits 15, 0, and		
		1 should be		
		ignored if they		
		can be different		
		values based		
		on the slot +1		
		of the Primary Controller. See		
		the above status		
		for meaning.		
		Applications		
		configured		
		for SIL2/PLd,		
		specify the		
		safety task as:		
		Safety task		
		OK		
		(x1000000		
		000000xx)		
		Safety task		
		inoperable		
		(x1000000		
		0000001xx)		
	SafetyStatus	Specifies the		1
	(INT)	safety status as:		
	(Applicable	• Safety		
	to Compact	task OK.		
	GuardLogix	(10000000		
	5370 and	00000000)		
	GuardLogix 5570	• Safety task		
	controllers only).	inoperable.		
		(10000000		
		00000001)		
		• Partner		
		missing.		

Safety Object	Attribute Name	Attribute Description	Accessible from	the Safety Task	Accessible from	the Standard
Safety Object	Attribute Name	Description (00000000) Partner unavailab le. (00000000 00000001) Hardware incompati ble (00000000	Accessible from	the Safety Task	Task	
	SafatuSignatura	(0000000 0000010) • Firmware incompatib le. (00000000 00000011) Indicates	V		×	
	SafetySignature Exists (SINT)	Indicates whether the safety signature is present.				
	SafetySignatur eID (DINT) (Applicable to Compact GuardLogix 5370, and GuardLogix 5570 controllers only)	32-bit identification number.			V	
	SafetySignature (String) (Applicable to Compact GuardLogix 5370, and GuardLogix 5570 controllers only)	ID number plus date and time stamp.			V	
	SafetyTaskFault Record (DINT) SafetySignaturel DLong SINT [33]	Records safety task faults. The first byte is the size of the safety signature			V V	

Safety Object	Attribute Name	Attribute Description	Accessible from	the Safety Task	Accessible from Task	the Standard
	(Applicable	ID in bytes and				
	to Compact	the remaining				
	GuardLogix	32 bytes contain				
	5380 and	the content				
	GuardLogix 5580	of the 32-byte				
	controllers only)	Safety signature				
		ID.				
	SafetySignaturel	64 character			1	
	DHex(String)	Hexadecimal				
	(Applicable	sting				
	to Compact	representation				
	GuardLogix	of signature ID				
	5380 and					
	GuardLogix 5580					
	controllers only)					
	SafetySignature	27 character			1	
	DateTime(String)	date time of a				
	(Applicable	safety signature				
	to Compact	in the format of				
	GuardLogix	mm/dd/yyyy,				
	5380 and	hh:mm:ss.iii <am< td=""><td></td><td></td><td></td><td></td></am<>				
	GuardLogix 5580	or PM>				
	controllers only)					

Monitor Status Flags

The controller supports status keywords you can use in your logic to monitor specific events:

- The status keywords are not case sensitive.
- Because the status flags can change so quickly, the Logix Designer application does not display the status of the flags (that is, even when a status flag is set, an instruction that references that flag is not highlighted).
- You cannot define a tag alias to a keyword.

You can use these keywords:

To determine if:	Use:
the value you are storing cannot fit into the destination because	S:V
it is either:	
• greater than the maximum value for the destination, or	
• less than the minimum value for the destination	
Important: Each time S:V goes from cleared to set, it generates	
a minor fault (type 4, code 4)	
the instruction's destination value is 0	S:Z
the instruction's destination value is negative	S:N

To determine if:	Use:
an arithmetic operation causes a carry or borrow that tries to	S:C
use bits that are outside of the data type	
For example:	
• adding 3 + 9 causes a carry of 1	
• subtracting 25 - 18 causes a borrow of 10	
this is the first, normal scan of the routines in the current	S:FS
program	
at least one minor fault has been generated:	S:MINOR
• The controller sets this bit when a minor fault occurs due	
to program execution.	
• The controller does not set this bit for minor faults that	
are not related to program execution, such as battery low.	

Select the Message Type

After entering the MSG instruction and specifying the MESSAGE structure, select the **Configuration** tab of the Message Configuration dialog to specify the details of the message.

The **Configuration** tab also includes a check box for setting and clearing the .TO bit.

The details you configure depend on the message type you select.

If the target device is a:	Select one of these message types:
Logix 5000 controller	CIP data table read
	CIP data table write
I/O module that you configure using the Logix Designer	Module Reconfigure
application	CIP Generic
PLC-5 [®] controller*	PLC-5 typed read
	PLC-5 typed write
	PLC-5 word range read
	PLC-5 word range write
SLC™ controller*	SLC typed read
MicroLogix™ controller*	SLC typed write
Block transfer module*	block transfer read
	block transfer write
PLC-3 [®] processor*	PLC-3 typed read
	PLC-3 typed write
	PLC-3 word range read

If the target device is a:	Select one of these message types:
	PLC-3 word range write
PLC-2 [®] processor*	PLC-2 unprotected read
	PLC-2 unprotected write

* When redundancy is enabled for ControlLogix 5580 or GuardLogix 5580 controllers, these message types are not supported.

Specify this configuration information:

In this field:	Specify:	
Source Element	If you select a read message type, the Source Element is the	
	address of the data you want to read in the target device. Use	
	the addressing syntax of the target device.	
	If you select a write message type, the Source Tag is the first	
	element of the tag that you want to send to the target device.	
	I/O structure tags and Booleans are not supported. All other	
	data types, for example INT, DINT, can be used.	
Number of Elements	The number of elements you read/write depends on the	
	message type and on the type of data you are using. For "word	
	range" and "unprotected" messages, the size of an element is	
	indicated in the dialog box. For CIP and "typed" messages, an	
	element is a single element of the array that you specify as the	
	source of a write or destination of a read	
Destination Element	If you select a read message type, the Destination Tag is the	
	first element of the tag in the Logix 5000 controller where you	
	want to store the data you read from the target device.	
	If you select a write message type, the Destination Element is	
	the address of the location in the target device where you want	
	to write the data.	

Module Faults: 16#0000 - 16#00ff

These are the module faults: 16#0000 - 16#00ff

Code	String	Explanation and Possible Causes/Solutions
16#0001	Connection Error.	A connection to a module failed.
16#0002	Resource unavailable.	Either: • there are not enough connections available either for the controller or for the communication module being used to connect through. Check the connection use of the controller or communication

		 module. If all of the connections are used, try to free some of the used connections or add another module to route the errant connection through. the I/O memory limits of the controller are exceeded. Check the I/O memory available and make program or tag changes if needed. the I/O module targeted does not have enough connections available. Check the number of controllers making a connection to this I/O module and verify that the number of connections is within the limits of the I/O module.
16#0005	Connection Request Error: Bad Class	The controller is attempting to make a connection to the module and has received an error. Either: • the configured address for the connection to the module is incorrect. • the module in use (that is, the physical module) is different than the module specified in the I/O configuration tree and is therefore causing the connection or service to fail. The fault may occur even when the module passed the electronic keying test. This may result when Disable Keying or Compatible Module options were used in the module configuration instead of the Exact Match option. Despite passing the electronic keying test, the module being connected to does not have the same features or settings as the module specified in the I/O configuration tree and does not support the connection or service

		Check the module in use and verify that it exactly matches the module specified in the I/O configuration tree of the Logix Designer application. If you are using a 1756-DHRIO module, verify that the Channel type selected in the software (DH+ or remote I/O network) matches the
		module's rotary switch settings.
16#0006	Connection Request Error: Bad Class.	 Either: the response buffer is too small to handle the response data. the module in use (that is, the physical module) is different than the module specified in the I/O configuration tree and is therefore causing the connection or service to fail. The fault may occur even when the module passed the electronic keying test. This may result when Disable Keying or Compatible Modul options were used in the module configuration instead of the Exact Match option. Despite passing the electronic keying test, the module being connected to does not have the same features or settings as the module specified in the I/O configuration tree and does not support the connection or service being attempted. Check the module in use and verify that it exactly matches the module specified in the I/O configuration tree of the Logix
		Designer application.
16#0007	Connection Request Error: Bad Class.	A service request is unconnected, but should be connected.
16#0008	Service Request Error: Unsupported Service	The controller is attempting to request a service from the module that is not supported by the module.

16#0009	Module Configuration Invalid: parameter	The configuration for the module is
	error.	invalid. The module configuration may
	Tip: Additional Fault Information for this	have been changed in the Data Monitor of
	fault will be displayed as a hex code on	programmatically.
	the Connection Tab.	If available for the module, access the
		Connections tab of the Module Propertie
		dialog box for the additional fault code.
		The additional fault code indicates
		the configuration parameter that is
		causing the fault. You may have to corre
		multiple parameters before this fault
		is cleared and connection is properly
		established.
16#000A	An attribute in the Get_Attributes_List or	Either:
	Set_Attributes_List has a non-zero status.	a connection is being created when
		the connection type is invalid.
		• an object attribute or tag value is
		invalid.
		If an object attribute or tag is invalid,
		export the Logix Designer file, then
		re-import it. Reschedule the ControlNet
		network after re-importing if applicable
10,400,00		
16#000C	Service Request Error: Invalid mode/state	The controller is attempting to request a
	for service request.	service from the module and has receive
		an error. First, verify that the module is
		not faulted.
		For an I/O module, this may indicate tha
		the module has one of these conditions:
		• Limited communication, but has a
		Major Fault
		• A firmware update needs to be
		completed or is currently being
		completed.
		Refer to the Module Info tab to determin
		the exact cause.
16#000D	Object already exists.	An I/O map instance is created where th
		instance is already in use.
16#000E	Attribute value cannot be set.	A MSG instruction is configured to
		change an attribute value that cannot be
		changed.
16#000F	Access permission denied for requested	A MSG instruction has been configured
10#000F	service.	to delete a map object that cannot be

16#0010	Mode or state of module does not allow object to perform requested service.	The state of the device prevents a service request from being handled.
16#0011	Reply data too large.	The reply to a message has a data size that is too large for the destination. Change the destination to a tag that can handle the data size and type being returned.
16#0013	Module Configuration Rejected: Data size too small.	The configuration for the module is invalid - not enough configuration data was sent. Verify that the correct module is being targeted.
16#0014	Undefined or unsupported attribute.	A MSG instruction is configured to change an attribute that does not exist.
16#0015	Module Configuration Rejected: Data size too large.	The configuration for the module is invalid - too much configuration data was sent. Verify that the correct module is being targeted.

Module Faults: 16#0100 - 16#01ff

These are the module faults: 16#0100 - 16#01ff

Code	String	Explanation and Possible Causes/Solutions
16#0100	Connection Request Error: Module in Use.	 The connection being accessed is already in use. Either: The controller is attempting to make a specific connection to a module and the module cannot support more than one of these connections. The target of a connection recognizes that the owner is
		attempting to remake a connection that is already running.
16#0103	Service Request Error: CIP transport class not supported.	 Either: The controller is requesting services not supported by the module. The module in use (that is, the physical module) is different than the module specified in the I/O

Code String	String	Explanation and Possible	
coue	String	Causes/Solutions	
		configuration tree and is therefore causing the connection or service t fail. The fault may occur even when the module passed the electronic keying test. This may result when Disable Keying or Compatible Modul options were used in the module configuration instead of the Exact Match option. Despite passing the electronic keying test, the module being connected to does not have the same features or settings as the module specified in the I/O configuration tree and does not support the connection or service being attempted. Check the module in use and verify that it exactly matches the module specified in the I/O configuration tree of the Logix	
16#0106	Connection Request Error: Module owned and configured by another controller. Module may accept only one connection if Unicast is used.	Designer application. An ownership conflict occurred for the connection. One of these conditions exists: • The Connection Request to this module has been rejected due to an Ownership conflict with another Owner (for example, anothe Controller). This may occur with modules such as output modules that only allow a single Owner to configure and control its outputs. This fault may also occur if the module is configured as Listen Only and supports only one connection. • If the Owner is connected to the module using a Unicast connection: to the module fail since the Owner controls the one connection.	

		Explanation and Possible
Code	String	Causes/Solutions
		Lauses/ solutions If the Owner is connected to the module using a Multicast connection over EtherNet/IP, Unicast connections to the module fail since the Owner controls the one connection. Configure both the Owner and the Listen-Only connection as Multicast.
16#0107	Connection Request Error: Unknown type.	A connection being accessed was not found.
16#0108	Connection Request Error: Connection type (Multicast/Unicast) not supported.	 The controller is requesting a connection type not supported by the module. One of these conditions exists: The module in use (that is, the physical module) is different than the module specified in the I/O configuration tree and is therefore causing the connection or service to fail. The fault may occur even when the module passed the electronic keying test. This may result when Disable Keying or Compatible Keying options were used in the module configuration instead of the Exact Match option. Despite passing the electronic keying test, the module being connected to does not have the same features or settings as the module specified in the I/O configuration tree and does not support the connection or service being attempted. Check the module in use and verify that it exactly matches the module specified in the I/O configuration tree of the Logix Designer application. You may have configured a consumed tag to use a Unicast

		Explanation and Possible	
Code	String	Causes/Solutions	
		connection, but the producing controller does not support Unicast connections.	
16#0109	Connection Request Error: Invalid connection size. Tip: Additional Error Information for this fault will be displayed as the tag name associated with the connection instance number that has the fault.	connections. The connection size is inconsistent with that expected. Either: • the controller is attempting to set up a connection with the module and cannot - the size of the connection is invalid. • the controller may be attempting to connect to a tag in a producing controller whose size does not match the tag in this controller. • the module in use (that is, the physical module) is different than the module specified in the I/O configuration tree and is therefore causing the connection or service to fail. • the fault may occur even when the module passed the electronic keying test. This may result when Disable Keying or Compatible Keying options were used in the module configuration instead of the Exact Match option. Despite passing the electronic keying test, the module being connected to does not have the same features or settings as the module specified in the I/O configuration tree and does not support the connection or service being attempted. Check the module in use and verify that it exactly matches the module specified in the I/O configuration tree of the Logix Designer application.	

Code	String	Explanation and Possible
		Causes/Solutions
		For remote I/O adapters, verify that the
		rack size and/or rack density is correct.
16#0110	Connection Request Error: Module not	The controller is attempting to set up a
	configured.	Listen Only connection with the module
		and cannot - the module has not been
		configured and connected to by an Owne
		(for example, another Controller).
		This controller is not an Owner of this
		module because it is attempting to
		establish a Listen Only connection, which
		requires no module configuration. It
		cannot connect until an Owner configure
		and connects to the module first.
16#0111	Requested Packet Interval (RPI) out of	Either:
	range.	the Requested Packet Interval (RPI)
		specified is invalid for this module
		or for a module in the path to this
		module. See the Advanced tab to
		enable the RPI from the producer.
		• the module in use (that is, the
		physical module) is different than
		the module specified in the I/O
		configuration tree and is therefore
		causing the connection or service t
		fail.
		The fault may occur even when
		the module passed the electronic
		keying test. This may result when
		Disable Keying or Compatible Modu
		options were used in the module
		configuration instead of the Exact
		Match option.
		Despite passing the electronic
		keying test, the module being
		connected to does not have the
		same features or settings as
		the module specified in the I/O
		configuration tree and does not
		support the connection or service
		being attempted.
		Check the module in use and
		verify that it exactly matches
		the module specified in the I/O

Chapter 4 Input/Output Instructions

Code	String	Explanation and Possible
COUE	String	Causes/Solutions
		 configuration tree of the Logix Designer application. for Listen Only connections: the RPI set by the owner of this module is slower than the one requested. Either increase the requested RPI or decrease the RPI the owner controller is using. See the Connection tab in the Module Properties dialog box for valid RPI values.
16#0113	Connection Request Error: Module connection limit exceeded.	 The number of connections is greater than what is available on the module. The number of connections must be reduced or the hardware must be upgraded. To reduce the number of connections: Change the Flex I/O communication adapter Comm Format from Input or Output configuration to Rack Optimization. When the Comm Format changes, the adapter must be removed and recreated in the I/O configuration tree. If the configuration uses messaging over ControlNet, sequence the messages to reduce the number tha are executing at the same time, or reduce the number of messages. Messages (MSG instructions) also use connections.
16#0114	Electronic Keying Mismatch: Electronic keying product code and/or vendor ID mismatch.	The Product Code of the actual module hardware does not match the Product Code of the module created in the software. Electronic Keying failed for this module. You may have a mismatch between the module created in the software and the actual module hardware.
16#0115	Electronic Keying Mismatch: Electronic Keying product type mismatch.	The Product Type of the actual module hardware does not match the Product Type of the module created in the software.

Code	String	Explanation and Possible
Jule	sung	Causes/Solutions
		Electronic Keying failed for this module. You may have a mismatch between the module created in the software and the
		actual module hardware.
16#0116	Electronic Keying Mismatch: Major and/or Minor revision invalid or incorrect.	The Major and/or Minor revisions of the module do not match the Major and/or Minor revisions of the module created in the software. Verify that you have specified the correc Major and Minor Revision if you have chosen Compatible Module or Exact Matc keying. Electronic Keying failed for this module. You may have a mismatch between the module created in the software and the actual module hardware.
16#0117	Connection Request Error: Invalid Connection Point. Tip: Additional Error Information for this fault appears as the tag name associated with the controller to controller (C2C) that has the fault.	 The connection is to an invalid port or port that is already in use. One of these conditions exists: Another controller owns this module and has connected with a Communications Format different than the one chosen by this controller. Verify that the Communications Format chosen is identical to that chosen by the first owner controller of the module. The module in use (that is, the physical module) is different than the one chosen the module in the I/O configuration tree and is therefore causing the connection or service to fail. The fault may occur even when the module passed the electronic keying test. This may result when Disable Keying or Compatible Modul
		The fault may occur even when the module passed the electronic keying test. This may result when

Code	String	Explanation and Possible
		Causes/Solutions
		same features or settings as
		the module specified in the I/O
		configuration tree and does not
		support the connection or service
		being attempted.
		Check the module in use and
		verify that it exactly matches
		the module specified in the I/O
		configuration tree of the Logix
		Designer application.
		• The controller may be attempting
		to connect to a nonexistent tag in a
		producing controller.
10,40110	Madula Canfirmation Delected 5	
16#0118	Module Configuration Rejected: Format	An invalid configuration format is used.
	error.	One of these conditions exists:
		The configuration class specified
		does not match the class supporte
		by the module.
		The connection instance is not
		recognized by the module.
		The path specified for the
		connection is inconsistent.
		• The module in use (that is, the
		physical module) is different than
		the module specified in the I/O
		configuration tree and is therefore
		causing the connection or service
		fail.
		The fault may occur even when
		the module passed the electronic
		keying test. This may result when
		Disable Keying or Compatible Modu
		options were used in the module
		configuration instead of the Exact
		Match option.
		Despite passing the electronic
		keying test, the module being
		connected to does not have the
		same features or settings as
		the module specified in the I/O
		configuration tree and does not
		support the connection or service
		being attempted.

Code	String	Explanation and Possible
	,	Causes/Solutions
		Check the module in use and
		verify that it exactly matches
		the module specified in the I/O
		configuration tree of the Logix
		Designer application.
16#0119	Connection Request Error: Module not	The controlling connection is not open.
	owned.	Where a Listen Only connection is
		requested, the controlling connection is
		not open.
16#011A	Connection Request Error: Out of	The controller is attempting to set up a
	Connection Resources	connection with the module and cannot -
		resources required are unavailable.
		If the module is a 1756 ControlNet module,
		up to five controllers can make Rack
		Optimization connections to the module.
		Verify that this number has not been
		exceeded.
		If the module is a 1794-ACN15,
		1794-ACNR15, or 1797-ACNR15 adapter,
		only one controller can make a Rack
		Optimization connection to the module.
		Verify that this number has not been
		exceeded.

Module Faults: 16#0200 - 16#02ff

These are the module faults: 16#0200 - 16#02ff.

Code	String	Explanation and Possible Causes/Solutions
16#0203	Connection timed out.	The owner or originator recognizes that the target device is on the network or backplane, however, I/O data and messages are not being responded to. In other words, the target can be reached, but its response is not as expected. For example, this fault may be indicated where multicast Ethernet packets are not returned. When this fault occurs, the controller usually attempts to continuously remove
		and remake the connection.

Code	String	Explanation and Possible
		Causes/Solutions
		If you are using FLEX I/O modules, verify
		that you are using the correct terminal
		device.
16#0204	Connection Request Error: Connection	The controller is attempting to make a
	request timed out.	connection, however, the target module i
		not responding.
		The device also appears to be missing
		from the backplane or network.
		To recover, take these actions:
		• Verify that the module has not been
		removed and is still functioning and
		receiving power.
		• Verify that the correct slot number
		has been specified.
		• Verify that the module is properly
		connected to the network.
		If you are using FLEX I/O modules, verify
		that the correct terminal block is in use.
16#0205	Connection Request Error: Invalid	Either:
	parameter.	• The controller is attempting to set
		up a connection with the module
		and has received an error - a
		parameter is in error.
		• The module in use (that is, the
		physical module) is different than
		the module specified in the I/O
		configuration tree and is therefore
		causing the connection or service t
		fail.
		The fault may occur even when
		the module passed the electronic
		keying test. This may result when
		Disable Keying or Compatible Modul
		options were used in the module
		configuration instead of the Exact
		Match option.
		Despite passing the electronic
		keying test, the module being
		connected to does not have the
		same features or settings as
		the module specified in the I/O
		configuration tree and does not

		Fundamentian and De:"
Code	String	Explanation and Possible Causes/Solutions
		support the connection or service
		being attempted.
		Check the module in use and
		verify that it exactly matches
		the module specified in the I/O
		configuration tree of the Logix
		Designer application.
16#0206	Connection Request Error: Requested size	Either:
	too large.	• The controller is attempting to set
		up a connection with the module
		and has received an error - the
		request size is too large.
		• The module in use (that is, the
		physical module) is different than
		the module specified in the I/O
		configuration tree and is therefore
		causing the connection or service to
		fail.
		The fault may occur even when
		the module passed the electronic
		keying test. This may result when
		Disable Keying or Compatible Module
		options were used in the module
		configuration instead of the Exact
		Match option.
		Despite passing the electronic
		keying test, the module being
		connected to does not have the
		same features or settings as
		the module specified in the I/O
		configuration tree and does not
		support the connection or service
		being attempted.
		Check the module in use and
		verify that it exactly matches
		the module specified in the I/O
		configuration tree of the Logix
		Designer application.

Module Faults: 16#0300 - 16#03ff

These are the module faults: 16#0300 - 16#03ff

Code	String	Explanation and Possible
coue	string	Causes/Solutions
6#0301	Connection Request Error: Out of buffer memory.	One of these conditions may exist: • The controller is attempting to set up a connection with the module and has received an error - a module in the path is out of memory • The controller may be attempting to connect to a tag in a producing controller that is not marked as being produced. • The controller may be attempting to connect to a tag in a producing controller. That tag may not be configured to allow enough consumers. • Reduce the size or number of connections through this module. • One of the network modules between the module and the controller may be out of memory. Check network configuration of the system. • The module may be out of memory. Check system configuration and capabilities of module. • The module in use (that is, the physical module) is different than the module specified in the I/O configuration tree and is therefore causing the connection or service to fail. The fault may occur even when the module passed the electronic keying test. This may result when Disable Keying or Compatible Module options were used in the module configuration instead of the Exact Match option. Despite passing the electronic

Code	String	Explanation and Possible
coue	String	Causes/Solutions
		connected to does not have the same features or settings as the module specified in the I/O configuration tree and does not support the connection or service being attempted. Check the module in use and verify that it exactly matches the module specified in the I/O configuration tree of the Logix Designer application.
16#0302	Connection Request Error: Out of communication bandwidth.	The controller is attempting to set up a connection with the module and has received an error - a module in the path has exceeded its communication bandwidth capacity. Increase the Requested Packet Interval (RPI) and reconfigure your network with RSNetWorx. Distribute the load on another bridge module.
16#0303	Connection Request Error: No bridge available.	The controller is attempting to set up a connection with the module and has received an error - a module in the path has exceeded its communication bandwidth capacity. Distribute the load on another bridge module.
16#0304	Not configured to send scheduled data.	The ControlNet module is not scheduled to send data. Use RSNetWorx software to schedule or reschedule the ControlNe network.
16#0305	Connection Request Error: ControlNet configuration in controller does not match configuration in bridge.	The ControlNet configuration in the controller does not match the configuration in the bridge module. This may occur because a ControlNet module was changed after the network was scheduled, or because a new control program has been loaded into the controller. Use RSNetWorx software to reschedule the connections.

Code	String	Explanation and Possible Causes/Solutions
16#0306	No ControlNet Configuration Master (CCM) available.	The ControlNet Configuration Master (CCM) cannot be found. The 1756-CNB an PLC-5C modules are the only modules capable of being a CCM and the CCM must be node number 1. Verify that a 1756-CNB or PLC-5C module is at node number 1 and is functioning properly. This fault may temporarily occur when the system is powered up and will be cleared when the CCM is located.
16#0311	Connection Request Error: Invalid port.	The controller is attempting to set up a connection with the module and has received an error. Verify that all modules in the I/O Configuration tree are the correct modules.
16#0312	Connection Request Error: Invalid link address.	The controller is attempting to set up a connection with the module and has received an error - an invalid link address has been specified. A link address can b a slot number, a network address, or the remote I/O chassis number and starting group. Verify that the chosen slot number for this module is not greater than the size the rack. Verify that the ControlNet node number is not greater than the maximum node number configured for the network in RSNetWorx software.
16#0315	Connection Request Error: Invalid segment type.	 The segment type or route is invalid. Either: the controller is attempting to set up a connection with the module and has received an error - the connection request is invalid the module in use (that is, the physical module) is different than the module specified in the I/O configuration tree and is therefore causing the connection or service fail.

Code	Staine	Explanation and Possible	
Code	String	Causes/Solutions	
		The fault may occur even when the module passed the electronic keying test. This may result when Disable Keying or Compatible Module options were used in the module configuration instead of the Exact Match option. Despite passing the electronic keying test, the module being connected to does not have the same features or settings as the module specified in the I/O configuration tree and does not support the connection or service being attempted. Check the module in use and verify that it exactly matches the module specified in the I/O configuration tree of the Logix	
16#0317	Connection Request Error: Connection not scheduled.	Designer application. The controller is attempting to set up a ControlNet connection with the module and has received an error. Use RSNetWorx software to schedule or	
16#0318	Connection Request Error: Invalid link address - cannot route to self.	reschedule the connection to this module The controller is attempting to set up a connection with the module and has received an error - the link address is invalid. Verify that the associated ControlNet module has the correct slot and/or node number selected.	
16#0319	Connection Request Error: No secondary resources available in redundant chassis.	The controller is attempting to set up a connection with the module and has received an error - the redundant module does not have the necessary resources to support the connection. Reduce the size or number of connection through this module or add another controller or ControlNet module to the system.	

Code	Stains	Explanation and Possible
Code	String	Causes/Solutions
16#031a	Connection Request Error: Rack Connection Refused.	Causes/Solutions The controller is attempting to set up a Direct connection with the module and has received an error. A Rack Optimized connection has already been established to this module through the 1756-CNB/R in the same chassis. • Connect to this module via the 1756-CNB/R in the same chassis. • Connect to this module via a different 1756-CNB/R in order to use a Direct connection. • Change the first connection from Rack Optimized to Direct, and then reestablish the second direct connect to this module from a controller in the same chassis as
16#031e	Connection Request Error: Cannot consume tag.	 1756-CNB/R. The controller is attempting to connect to a tag in a producing controller and has received an error. The controller is attempting to connect to a tag in a producing controller and that tag has already been used by too many consumers. Increase the maximum number of the control of the
16#031f	Connection Request Error: Cannot consume tag.	consumers on the tag. No SC (servicing controller) connection object was found that corresponds to a symbol instance.
16#0322	Connection Request Error: Connection point mismatch	 A connection point mismatch has occurred. Either: a new connection requested does not match the existing connection. Check the controllers that are using the connection and verify that all th configurations are identical. the connection requested is not a listener or a controlling connection

Module Faults: 16#0800 - 16#08ff

These are the module faults: 16#0800 - 16#08ff

Code	String	Explanation and Possible Causes/Solutions
16#0800	Network link in path to module is offline.	No interpretation available.
16#0801	Incompatible multi-cast RPI.	No interpretation available.
16#0810	No target application data available.	The controlling application has not
		initialized the data to be produced by the
		target device. This may be caused when
		"Send Data" connections are configured
		in a target device and the controlling
		application for that target device has not
		initialized the data to be produced.
		For the target device associated with the
		"Send Data" connection reporting this
		connection error, start the controlling
		application and perform at least one
		write of data. Refer to the documentation
		for the target device and its controlling
		application for information on how to do
		this.
16#0814	Connection Request Error: Data Type	Invalid connection status information was
	Mismatch.	found.

Module Faults: 16#fd00 - 16#fdff

The module faults: 16#fd00 - 16#fdff.

Code	String	Explanation and Possible Causes/Solutions
16#fd03	Connection Request Error: Required Connection missing	 The controller is attempting to set up a connection with the module and has received an error - this module requires a particular set of connections and connection types, and one of those connection types is missing. Contact Rockwell Automation technical support at Rockwellautomation.com.
16#fd04	Connection Request Error: No CST Master Detected	The controller is attempting to set up a connection with the module and has

Code	String	Explanation and Possible
coue	String	Causes/Solutions
		 received an error - this module requires a CST master in the chassis. Configure a module (typically a controller) in this chassis to be the CST master. Contact Rockwell Automation technical support at Rockwellautomation.com.
16#fd05	Connection Request Error: No Axis or Group Assigned.	 The controller is attempting to set up a connection with the module and has received an error - this module requires an axis or group table assigned. Assign a Group or Axis. Contact Rockwell Automation technical support at Rockwellautomation.com.
16#fd06	Transition Fault	The controller command to transition the SERCOS ring to a new phase returned an error from the module. Check for duplicate Drive Nodes.
16#fd07	Incorrect SERCOS Data Rate	An attempt to configure the SERCOS ring failed. The baud rate for all devices must be the same and supported by the drives and the SERCOS module.
16#fd08	SERCOS Comm Fault	 Mainly two sets of faults may cause a Comm. Fault - Physical and interface faults. A possible source of physical faults is: Broken ring Loose connector Fiber optics not clean Electrical noise due to improper drive grounding Too many nodes on the ring Interface errors are encountered when you are configuring third party drives. A possible source of interface errors is: No SERCOS MST (Protocol Error) Missed AT (drive did not send data

Code	String	Explanation and Possible	
	-	Causes/Solutions	
		• SERCOS timing error in phase 3	
		• Error in drive data returned to	
		SERCOS module	
16#fd09	Node Initialization Fault	An attempt by the controller to configure	
		the node for cyclic operation returned an	
		error.	
16#fdOa	Axis Attribute Error	A bad response was received from a	
		motion module.	
16#fdOc	Error Different Grandmaster Fault	The end device has a different	
		grandmaster than the controller.	
16#fd1f	Bad Safety Protocol Format	An error occurred adding the safety	
		network segment to a route.	
16#fd20	No Safety Task	No safety task appears to be running.	
16#fd22	Chassis Size Mismatch	Verify the number of physical expansion	
		I/O modules configured for the controller	
		and then update the number of modules	
		selected from the Expansion I/O list	
		on the General page in the Controller	
		Properties dialog.	
16#fd23	Chassis Size Exceeded	To verify the number of physical	
		expansion I/O the controller supports,	
		open the Controller Properties dialog	
		and expand the Expansion I/O list on the	
		General page.	
		Configure the number of physical	
		expansion I/O modules to match the	
		selection in the Expansion I/O list.	

Module Faults: 16#fe00 - 16#feff

The module faults: 16#fe00 - 16#feff.

Code	String	Explanation and Possible Causes/Solutions
16#fe01		An invalid configuration format was encountered.
16#fe02	Requested Packet Interval (RPI) out of range.	 The Requested Packet Interval (RPI) specified is invalid for this module. See the Connection tab for valid RPI values.

		Explanation and Possible
Code	String	Causes/Solutions
		The input connection point has not been
		set.
16#fe04	Connection Request Error: Invalid input	The controller is attempting to set up
	data pointer.	a connection with the module and has
		received an error.
16#fe05	Connection Request Error: Invalid input	Either:
	data size.	• The controller is attempting to set
		up a connection with the module
		and has received an error.
		• The module in use (that is, the
		physical module) is different than
		the module specified in the I/O
		configuration tree and is therefore
		causing the connection or service to
		fail.
		The fault may occur even when
		the module passed the electronic
		keying test. This may result when
		Disable Keying or Compatible Module
		options were used in the module
		configuration instead of the Exact
		Match option.
		Despite passing the electronic
		keying test, the module being
		connected to does not have the
		same features or settings as
		the module specified in the I/O
		configuration tree and does not
		support the connection or service
		being attempted.
		Check the module in use and
		verify that it exactly matches
		the module specified in the I/O
		configuration tree of the Logix
		Designer application.
16#fe06		The input force point has not been set.
16#fe07		The output connection point has not been
		set.
16#fe08	Connection Request Error: Invalid output	The controller is attempting to set up
	data pointer.	a connection with the module and has
		received an error.

Code	String	Explanation and Possible
	String	Causes/Solutions
16#fe09	Connection Request Error: Invalid output data size.	Either: • The controller is attempting to set up a connection with the module and has received an error. • The module in use (that is, the physical module) is different than the module specified in the I/O configuration tree and is therefore causing the connection or service to fail. The fault may occur even when the module passed the electronic keying test. This may result when Disable Keying or Compatible Module options were used in the module configuration instead of the Exact Match option. Despite passing the electronic keying test, the module being connected to does not have the same features or settings as the module specified in the I/O configuration tree and does not support the connection or service being attempted. Check the module in use and verify that it exactly matches the module specified in the I/O configuration tree of the Logix Designer application.
16#feOa		The output force pointer has not been set
16#feOb	Invalid symbol string.	 Either: The tag to be consumed on this module is invalid. Verify that the tag is marked as being produced. The module in use (that is, the physical module) is different than the module specified in the I/O configuration tree and is therefore causing the connection or service to fail. The fault may occur even when

Code	String	Explanation and Possible	
		Causes/Solutions	
		keying test. This may result when	
		Disable Keying or Compatible Modul	
		options were used in the module	
		configuration instead of the Exact	
		Match option.	
		Despite passing the electronic	
		keying test, the module being	
		connected to does not have the	
		same features or settings as	
		the module specified in the I/O	
		configuration tree and does not	
		support the connection or service	
		being attempted.	
		Check the module in use and	
		verify that it exactly matches	
		the module specified in the I/O	
		configuration tree of the Logix	
		Designer application.	
16#feOc	Invalid PLC-5 instance number.	The controller is attempting to set up	
		a connection with the PLC-5 and has	
		received an error.	
		Verify that the instance number specifie	
		has been properly specified in the PLC-5	
16#feOd	Tag does not exist in peer controller.	The symbol instance number was found	
		to not be set.	
16#feOe	Automatic Firmware Update in progress.	The module is currently being updated.	
16#feOf	Automatic Firmware Update Failed:	Firmware supervisor has attempted to	
	Firmware file incompatible with the	update an unsupported module.	
	module.		
16#fe10	Automatic Firmware Update Failed:	The firmware file to update the module	
	Firmware file not found.	cannot be found.	
16#fe11	Automatic Firmware Update Failed:	The firmware file is corrupted.	
	Firmware file invalid.		
16#fe12	Automatic Firmware Update Failed.	An error has occurred while updating the	
	natomatio i miniaro opuato i anca.	module.	
10446-17	Automotio Eirmuuse Undete Faile d		
16#fe13	Automatic Firmware Update Failed:	An active connection could not be made	
	Detected Active Connections.	to the target module.	
16#fe14	Automatic Firmware Update pending:	The firmware file is currently being read.	
	Searching NVS file for appropriate module		
	identity.		

Code	String	Explanation and Possible Causes/Solutions
16#fe22		The target-to-originator netparams connection type is invalid.
16#fe23		The target-to-originator netparams connection does not specify whether unicast is allowed.

Module Faults: 16#ff00 - 16#ffff

These are the module faults: 16#ff00 - 16#ffff.

Code	String	Explanation and Possible Causes/Solutions
16#ff00	Connection Request Error: No connection	The controller is attempting to set up
	instance.	a connection with the module and has
		received an error.
		Verify that the physical module is the
		same module type (or is a compatible
		module) as created in the software.
		If the module is a 1756-DHRIO module
		in a remote chassis (connected via a
		ControlNet network), verify that the
		network has been scheduled with
		RSNetWorx software.
		Even after the network has been
		scheduled with RSNetWorx for ControlNe
		software, if you are online and if the
		1756-DHRIO module is configured for DH
		+ network only, a #ff00 Module Fault (no
		connection instance) may occur. The
		module is properly communicating even
		though Faulted is displayed as its Status
		on the Module Properties dialog box.
		Disregard the error message and fault
		status and continue.
16#ff01	Connection Request Error: Path to module	The controller is attempting to set up
	too long.	a connection with the module and has
		received an error.
		Verify that the path to this module is a
		valid length.
16#ff04		The remote controller's map instance
		attempted to access a connection while
		being in an invalid state.

Code	String	Explanation and Possible Causes/Solutions
16#ff08	Connection Request Error: Invalid path to module.	The controller is attempting to set up a connection with the module and has received an error. Verify that the path to this module is a valid length.
16#ffOb	Module Configuration Invalid: bad format.	 Either: The configuration for the module is invalid. The module in use (that is, the physical module) is different than the module specified in the I/O configuration tree and is therefore causing the connection or service to fail. The fault may occur even when the module passed the electronic keying test. This may result when Disable Keying or Compatible Module options were used in the module configuration instead of the Exact Match option. Despite passing the electronic keying test, the module being connected to does not have the same features or settings as the module specified in the I/O configuration tree and does not support the connection or service being attempted. Check the module in use and verify that it exactly matches the module specified in the I/O configuration tree of the Logix Designer application.
16#ff0e	Connection Request Error: No connections accepted to bridge.	The controller is attempting to set up a connection with the module and has received an error.

Specify CIP Messages

The CIP Data Table Read and Write message types transfer data between Logix 5000 controllers.

Select this command	If you want to
CIP Data Table Read	Read data from another controller. The Source and Destination types must match.
CIP Data Table Write	Write data to another controller.
	The Source and Destination types must match.

Reconfigure an I/O Module

Use the Module Reconfigure message to send new configuration information to an I/O module.

During the reconfiguration, the following occurs:

- Input modules continue to send input data to the controller.
- Output modules continue to control their output devices.

A Module Reconfigure message requires this configuration properties.

In this property	Select
Message Type	Module Reconfigure

Example

Follow these steps to reconfigure an I/O module.

- 1. Set the required member of the configuration tag of the module to the new value.
- 2. Send a Module Reconfigure message to the module.

When reconfigure[5] is set, set the high alarm to 60 for the local module in slot 4. The Module Reconfigure message then sends the new alarm value to the module. The one shot instruction prevents the rung from sending multiple messages to the module while the reconfigure[5] is on.

Т

Tip: We recommend that you always include an XIO of the MSG.EN bit as an in-series MSG rung precondition.

Relay Ladder

Structured Text

IF reconfigure[5] AND NOT reconfigure[6]THEN Local:4:C.ChOConfig.HAlarmLimit := 60;

IF NOT change_Halarm.EN THEN MSG(change_Halarm);

END_IF; END_IF;

reconfigure[6] := reconfigure[5];

Specify CIP Generic Messages

lf you want to	In this property	Type or select		
Perform a pulse test on a	Message Type	CIP Generic		
digital output module	Service Type	Pulse Test		
	Source	tag_name of type INT [5]	tag_name of type INT [5]	
		This array contains	Description	
		tag_name[0]	Bit mask of points to test (tes only one point at a time)	
		tag_name[1]	Reserved, leave O	
		tag_name[2]	Pulse width (hundreds of H, usually 20)	
		tag_name[3]	Zero cross delay for ControlLogix I/O (hundreds of H, usually 40)	
		tag_name[4]	Verify delay	
	Destination	Blank		
Get audit value	Message Type	CIP Generic		
	Service Type	Audit Value Get	Audit Value Get	
	Source Element	Cannot change this field, blank	Cannot change this field, blank	
	Source Length	Cannot change this field, set to	Cannot change this field, set to 0 bytes	
	Destination Element	This array contains	Description	
		tag_name of type DINT[2] or LINT	This tag contains the Audit Value for the controller. Important: Rockwell Automation recommends using the DINT[2] data type to avoid limitations when working with LINT data types in Allen-Bradley® controllers.	
Get controller events	Message Type	CIP Generic		
monitored for changes	Service Type	Changes to Detect Get	Changes to Detect Get	
	Source Element	Cannot change this field, blank	Cannot change this field, blank	
	Source Length	Cannot change this field, set to	0 bytes	
	Destination Element	This array contains	Description	

IMPORTANT: ControlLogix modules have services that can be invoked by using a MSG instruction and choosing the CIP Generic message type.

If you want to	In this property	Type or select	
		tag_name of type DINT[2] or LINT	This tag represents a bit mask of the changes monitored for the controller. Important: Rockwell Automation recommends using the DINT[2] data type to avoid limitations when working with LINT data types in Allen-Bradley controllers.
Set controller events	Message Type	CIP Generic	
monitored for changes	Service Type	Changes to Detect Set	
	Source Element	This array contains tag_name of type DINT[2] or LINT	Description This tag represents a bit mask of the changes monitored for
			the controller. Important: Rockwell Automation recommends using the DINT[2] data type to avoid limitations when working with LINT data types in Allen-Bradley controllers.
	Source Length	Cannot change this field, set to 8 bytes	
	Destination Element	Cannot change this field, blank	
Reset electronic fuses on a	Message Type	CIP Generic	
digital output module	Service Type	Reset Electronic Fuse	
	Source	tag name of type DINT This tag represents a bit mask o	of the points to reset fuses on.
	Destination	Leave blank	
Reset latched diagnostics on a	Message Type	CIP Generic	
digital input module	Service Type	Reset Latched Diagnostics (I)	
	Source	tag_name of type DINT This tag represents a bit mask o on.	of the points to reset diagnostics
Reset latched diagnostics on a	Message Type	CIP Generic	
digital output module	Service Type	Reset Latched Diagnostics (0)	
	Source	tag_name of type DINT This tag represents a bit mask o on.	of the points to reset diagnostics
Unlatch the alarm of an analog	Message Type	CIP Generic	
input module	Service Type	Select which alarm that you war	nt to unlatch.

Chapter 4 Input/Output Instructions

If you want to	In this property	Type or select
		• Unlatch All Alarms (I)
		• Unlatch Analog High Alarm (I)
		• Unlatch Analog High High Alarm (I)
		• Unlatch Analog Low Alarm (I)
		• Unlatch Analog Low Low Alarm (I)
		• Unlatch Rate Alarm (I)
	Instance	Channel of the alarm to unlatch.
Unlatch the alarm of an analog	Message Type	CIP Generic
output module	Service Type	Select which alarm that you want to unlatch.
		• Unlatch All Alarms (0)
		• Unlatch High Alarm (0)
		• Unlatch Low Alarm (0)
		• Unlatch Ramp Alarm (0)
	Instance	Channel of the alarm to unlatch.

Get/Set Controller Events Monitored for Changes Bit Definitions

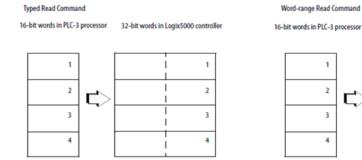
Tag Names	Data Type	Bit Definition
Get Controller Events Monitored for	DINT[0]	Each bit has a specific meaning:
Changes		O Store to removable media through Logix
Set Controller Events Monitored for		Designer application
Changes		1 Online edits were accepted, tested, or
		assembled
		2 Partial import online transaction
		completed
		3 SFC Forces were enabled
		4 SFC Forces were disabled
		5 SFC Forces were removed
		6 SFC Forces were modified
		7 I/O Forces were enabled
		8 I/O Forces were disabled
		9 I/O Forces were removed
		10 I/O Forces were changed
		11 Firmware update from unconnected
		source
		12 Firmware update via removable media
		13 Mode change via workstation
		14 Mode change via mode switch
		15 A major fault occurred
		16 Major faults were cleared
		7 Major faults were cleared via mode
		switch
		118 Task properties were modified

Tag Names	Data Type	Bit Definition
lay names		
		19 Program properties were modified
		20 Controller timeslice options were
		modified
		21 Removable media was removed
		22 Removable media was inserted
		23 Safety signature created
		24 Safety signature deleted
		25 Safety lock
		26 Safety unlock
		27 Constant tag value changed
		28 Constant tag multiple values changed
		29 Constant tag attribute cleared
		30 Tag set as constant
		31 Custom log entry added
	DINT[1]	32 Change that affects correlation
		33 Helps protect signature in Run mode
		attribute set
		34 Helps protect signature in Run mode
		attribute cleared
		3563 Unused

) Tip:

•

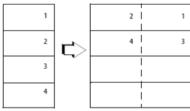
- Selecting the **CIP Generic** message type enables the **Large Connection** option on the **Communication** tab. Use large CIP Generic connections when a message is greater than 480 bytes. 500 bytes is typical, but there are headers at the front of the message. Large CIP connections are for messages up to 3980 bytes.
- The Large Connection box is enabled only when the Connected box is checked and CIP Generic is selected as the message type on the Configuration tab.
- The Large Connection option is available only in Logix Designer application, version 21.00.00 or later and RSLogix 5000 software, version 20.00.00 or later.


Specify PLC-3 Messages

The PLC-3 message types are designed for PLC-3 processors.

Select this command:	To:
PLC3 Typed Read	Read integer or REAL type data.
	For integers, this command reads 16-bit integers from the PLC-3
	processor and stores them in SINT, INT, or DINT data arrays in
	the Logix 5000 controller and maintains data integrity.

Select this command:	To:
	This command also reads floating-point data from the
	PLC-3 and stores it in a REAL data type tag in the Logix 5000
	controller.
PLC3 Typed Write	Write integer or REAL type data.
	This command writes SINT or INT data, to the PLC-3 integer file
	and maintains data integrity. You can write DINT
	data as long as it fits within an INT data type (–32,768 \geq data \leq
	32,767).
	This command also writes REAL type data from the Logix 5000
	controller to a PLC-3 floating-point file.
PLC3 Word Range Read	Read a contiguous range of 16-bit words in PLC-3 memory
	regardless of data type.
	This command starts at the address specified as the Source
	Element and reads sequentially the number of 16-bit words
	requested.
	The data from the Source Element is stored, starting at the
	address specified as the Destination Tag.
PLC3 Word Range Write	Write a contiguous range of 16-bit words from Logix 5000
	memory regardless of data type to PLC-3 memory.
	This command starts at the address specified as the Source
	Tag and reads sequentially the number of 16-bit words
	requested.
	The data from the Source Tag is stored, starting at the address
	specified as the Destination Element in the PLC-3 processor.


The following diagrams show how the typed and word-range commands differ. The example uses read commands from a PLC-3 processor to a Logix 5000 controller.

The typed commands maintain data structure and value.

16-bit words in PLC-3 processor

The word-range commands fill the destination tag contiguously. Data structure and value change depending on the destination data type.

Specify PLC-5 Messages

Use the PLC-5 message types to communicate with PLC-5 controllers.

Select this command:	To:
PLC-5 Typed Read	Read 16-bit integer, floating-point, or string type data and
	maintain data integrity.
PLC-5 Typed Write	Write 16-bit integer, floating-point, or string type data and
	maintain data integrity.
PLC-5 Word Range Read	Read a contiguous range of 16-bit words in PLC-5 memory
	regardless of data type.
	This command starts at the address specified as the Source
	Element and reads sequentially the number of 16-bit words
	requested.
	The data from the Source Element is stored, starting at the
	address specified as the Destination Tag.
PLC-5 Word Range Write	Write a contiguous range of 16-bit words from Logix 5000
	memory regardless of data type to PLC-5 memory.
	This command starts at the address specified as the Source
	Tag and reads sequentially the number of 16-bit words
	requested.
	The data from the Source Tag is stored, starting at the address
	specified as the Destination Element in the PLC-5 processor.

Data types for PLC-5 Typed Read and Typed Write messages

The following table shows the data types to use with PLC-5 Typed Read and PLC-5 Typed Write messages.

For this PLC-5 data type:	Use this Logix 5000 data type:
В	INT
F	REAL
INT	
	DINT (Only write DINT values to a PLC-5 controller if the value is
	2-
	32,768 and ≤ 32,767.)
S	INT
ST	STRING

The Typed Read and Typed Write commands also work with SLC 5/03 processors (OS303 and above), SLC 5/04 processors (OS402 and above), and SLC 5/05 processors.

Specify PLC-2 Messages

The PLC-2 message types are designed for PLC-2 processors.

Select this command:	To:		
PLC2 Unprotected Read	Read 16-bit words from any area of the PLC-2 data table or the		
	PLC-2 compatibility file of another processor.		

Select this command:	To:		
PLC2 Unprotected Write	Write 16-bit words to any area of the PLC-2 data table or the		
	PLC-2 compatibility file of another processor.		

The message transfer uses 16-bit words, so make sure the Logix 5000 tag appropriately stores the transferred data, typically as an INT array.

L8 controllers for tables—not bold

CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers

Compare Instructions

The compare instructions let you compare values by using an expression or a specific compare instruction.

Available Instructions

Ladder Diagram

CMP on	EQ on	GE on	GT on	IsINF	Isnan	LE on	LT on	LIMIT	MEQ on	NE on
page 327	page	page	page	on page	on page	page	page	on page	page	page 379
	319	338	330	345	347	356	348	363	372	

Function Block Diagram

FBD Block

EQ on page	GE on page	GT on page	LE on page	LT on page	LIMIT on page	MEQ on page	NE on page
319	338	330	356	348	363	372	379

Structured Text

Not available

If you want to:	Use this instruction:
compare values based on an expression	СМР
test whether two values are equal	EQ
test whether one value is greater than or equal to a second	GE
value	
test whether one value is greater than a second value	GT
test whether the source is infinite	ISINF
test whether the source is not a number	ISNAN
test whether one value is less than or equal to a second value	LE
test whether one value is less than a second value	LT
test whether one value is between two other values	LIMIT
pass two values through a mask and test whether they are	MEQ
equal	
test whether one value is not equal to a second value	NE

Compare values of different data types, such as floating point and integer.

The bold data types indicate optimal data types. An instruction executes at its fastest and with it lowest memory requirements if all the parameters of the instruction use the same optimal data type, typically DINT or REAL.

Equal To (EQ)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the EQ instruction and the operator = test whether Source A is equal to Source B.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from EQU to EQ.

Available Languages

Ladder Diagram

EQ	
Equal	
Source A	?
	??
Source B	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	EQ		
	Equal		
	EQ_01		
C	SourceA	Dest	3
C	SourceB		

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use the operator '=' with an expression to achieve the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

Numeric Comparison

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate tag	Value to test against
	INT	INT		Source B
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		TIME		
		TIME32		
		LTIME		
		DT		
		LDT		
Source B	SINT	SINT	immediate tag	Source to test against
	INT	INT		Source A
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		TIME		

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
		TIME32 LTIME		
		DT		
		LDT		

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

String Comparison

Tip: Immediate string literals are only applicable to the CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers.

Operand	Data Type	Format	Description
Source A	String type	immediate literal value tag	String to test against Source B
Source B	String type	immediate literal value tag	String to test against Source A

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
EQU	FBD_COMPARE	tag	EQ structure

FBD_COMPARE Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is true.
SourceA	REAL	Value to test against SourceB
SourceB	REAL	Value to test against SourceA

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction is enabled.
Dest	BOOL	Set to true when SourceA is equal to
		SourceB. Cleared to false when SourceA is
		not equal to SourceB.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	Data Type	Description
SourceA (top)	SINT	Value to test against SourceB.
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	
SourceB (bottom)	SINT	Value to test against SourceA
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type	Description
Dest	BOOL	Set to true when SourceA is equal to
		SourceB. Cleared to false when SourceA is
		not equal to SourceB.

See FBD Functions on page 862.

Affects Math Status Flags

No

Major/Minor Faults

See EQ String Compare Flow Chart for faults.

See Index Through Arrays on page 863 for array-indexing faults.

Execution

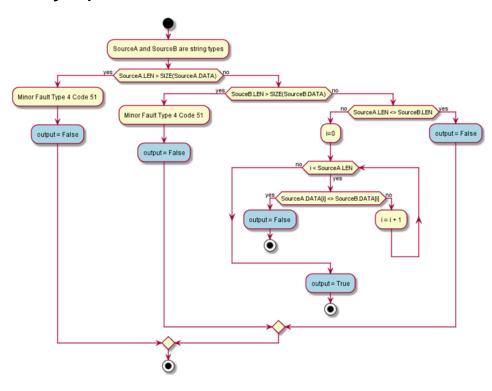
Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Numeric compare:
	If Source A and Source B are not NANs and Source A is equal to
	Source B.
	Set Rung-condition-out to true
	else
	Clear Rung-condition-out to false.
	String compare:
	See EQU String Compare Flow Chart.
	If output is false
	Clear Rung-condition-out to false
	else
	Set Rung-condition-out to true
Postscan	N/A

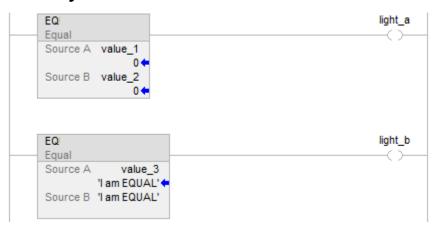
Function Block Diagram

FBD Block

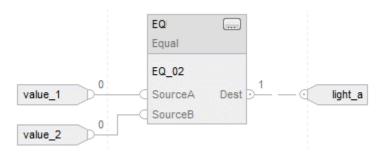
Condition/State	Action Taken
Prescan	N/A
Enableln is false	Set EnableOut to EnableIn
Enableln is true	Numeric compare:
	Set EnableOut to EnableIn
	If SourceA and SourceB are not NANs and SourceA is equal to
	SourceB.
	Set Dest to true
	else
	Clear Dest to false.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.


Condition/State	Action Taken
Prescan	N/A
Normal Scan	Numeric compare:
	If SourceA and SourceB are not NANs and SourceA is equal to
	SourceB.
	Set Dest to true
	else
	Clear Dest to false.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

EQ String Compare Flow Chart


Examples

Ladder Diagram

Function Block Diagram

FBD Block

FBD Function

=,

Structured Text

if value_1 = value_2 then
light_a := 1;
else
light_a := 0;
end_if;
if value_3 = '1 am EQUAL' then
light_b := 1;
else
light_b := 0;
end_if;

Compare (CMP)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

Define the CMP expression using operators, tags, and immediate values. Use parentheses () to define sections of more complex expressions.

The advantage of the CMP instruction is that it allows complex expressions in one instruction.

When evaluating the expression all non-REAL operands will be converted to REAL before the calculations are performed if any of the following conditions is true.

- Any operand in the expression is REAL.
- The expression contains SIN, COS, TAN, ASIN, ACOS, ATAN, LN, LOG, DEG or RAD.

There are rules for allowable operators in safety applications. See Valid Operators.

Available Languages

Ladder Diagram

	CMP		
_	Compare		_
	Expression	?	

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

These are the operands for the CMP instruction.

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

The following is the Ladder Diagram operand.

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Expression	SINT	SINT	immediate tag	An expression
	INT	INT		consisting of tags
	DINT	DINT		and/or immediate
	REAL	LINT		values separated by
	String type	USINT		operators
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		String type		

Formatting expressions

For each operator used in an expression, one or two operands (tags or immediate values) must be provided. Use the following table to format operators and operands within an expression.

For operators that operate on:	Use this format:	Example
One operand	operator(operand)	ABS(tag)
Two operands	operand_a operator operand_b	tag_b + 5
		tag_c AND tag_d
		(tag_e**2) MOD (tag_f / tag_g)

Determine the order of operation

The instructions performs operations in the expression are in a prescribed order, not necessarily the order they appear. The order of operation can be specified by grouping terms within parentheses, forcing the instruction to perform an operation within the parentheses ahead of their operations.

Operations of equal order are performed from left to right.

Order	Operation
1	()
2	ABS, ACOS, ASIN, ATAN, COS, DEG, BCD_TO, ISINF, ISNAN, LN, LOG, Rad, Sin, Sort, Tan, To_bcd, Trunc
3	**
4	- (negate), NOT, !
5	*, /, MOD

Order	Operation
6	- (subtract), +
7	AND
8	XOR
9	OR
10	<, <=, >, >=, =, <>
1	&&
12	٨٨
13	l

Using strings in an expression

To use strings of ASCII characters in an expression, follow these guidelines:

- An expression can compare two string tags.
- ASCII characters cannot be entered directly into the expression.
- The following operands are permitted:

Operator	Description
=	Equal
<	Less than
<=	Less than or equal
>	Greater than
>=	Greater than or equal
\$	Not equal

- Strings are equal if their characters match.
- ASCII characters are case-sensitive. Uppercase A (\$41) is not equal to lowercase a (\$61).
- The hexadecimal values of the characters determine if one string is less than or greater than another string.
- When the two strings are sorted as in a telephone directory, the order of the strings determine which one is greater.

ASCII Characters	Hex Codes
1ab	\$31\$61\$62
1b	\$31\$62
A	\$41
AB	\$41\$42
В	\$42
а	\$61
ab	\$61\$62

Affects Math Status Flags

Controllers	Affects Math Status Flags
-------------	---------------------------

CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	No
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	The CMP instruction affects the math status flags if the
5370, and GuardLogix 5570 controllers	expression contains an operator (for example, +, –, *, /) that
	affects the math status flags.

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A.
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in if expression evaluates to false Rung-condition-out is cleared to false
Postscan	N/A

Example

Ladder Diagram

CMP Compare	light_a
Expression value_1 = value_2	

If value_1 is equal to value_2, light_a is set to true. If value_1 is not equal to value_2, light_a is cleared to false.

Greater Than (GT)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the Greater Than (GT) instruction and the operator > tests whether Source A is greater than Source B.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from GRT to GT.

Available Languages

Ladder Diagram

GT Greater Than	(A>B)
Source A	?
	??
Source B	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	GT	
	Greater Than	n (A>B)
	GT_01	
¢	SourceA	Dest
þ	SourceB	

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

>_

Structured Text

This instruction is not available in structured text.

Tip: Use the operator > with an expression to achieve the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

Numeric Comparison

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate	Value to test against
	INT	INT	tag	Source B
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		TIME		
		TIME32		
		LTIME		
		DT		
		LDT		
Source B	SINT	SINT	immediate	Value to test against
	INT	INT	tag	Source A
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		TIME		
		TIME32		
		LTIME		
		DT		
		LDT		

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

String Comparison

Tip: Immediate string literals are only applicable to the CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers.

Operand	Data Type	Format	Description
Source A	String type	immediate literal value	String to test against Source B
		tag	
Source B	String type	immediate literal value	String to test against Source A
		tag	

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
GT	FBD_COMPARE	tag	GT structure

FBD_COMPARE Structure

Input Members	Data Type	Description	
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated	
		Default is true.	
SourceA	REAL	Value to test against SourceB	
SourceB	REAL	Value to test against SourceA	

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction is enabled.
Dest	BOOL	Set to true when SourceA is greater than
		SourceB. Cleared to false when SourceA is
		not greater than SourceB.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

	Data Type CompactLogix 5380, CompactLogix	
Input Operands (Left Pins)	5480, ControlLogix 5580, Compact	Description
	GuardLogix 5380, and GuardLogix 5580	
	controllers	
SourceA (top)	SINT	Value to test against SourceB
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	
SourceB (bottom)	SINT	Value to test against SourceA
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Dest	BOOL	Set to true when SourceA is greater than SourceB. Cleared to false when SourceA is not greater than SourceB.

See FBD Functions on page 862.

Affects Math Status Flags

No

Major/Minor Faults

See GT String Compare Flow Chart on page 338 for faults.

See Index Through Arrays on page 863 for array-indexing faults.

Execution

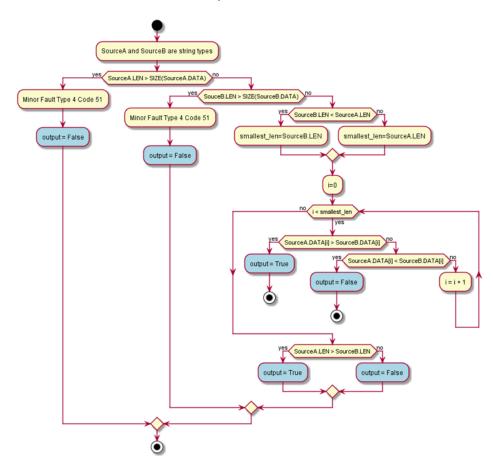
Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Numeric compare:
	If Source A and Source B are not NANs and Source A is greater
	than Source B.
	Set Rung-condition-out to true
	else
	Clear Rung-condition-out to false.
	String compare:
	See GT String Compare Flow Chart on page 338
	If output is false
	Clear Rung-condition-out to false
	else
	Set Rung-condition-out to true
Postscan	N/A

Function Block Diagram

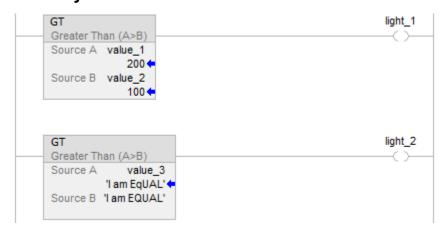
FBD Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn
Enableln is true	Numeric compare:
	Set EnableOut to EnableIn
	If SourceA and SourceB are not NANs and SourceA is greater
	than SourceB.
	Set Dest to true
	else
	Clear Dest to false.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

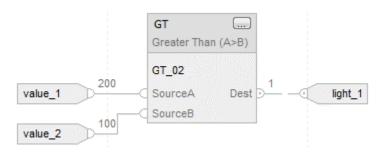

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken	
Prescan	N/A	
Normal Scan	Numeric compare:	
	If SourceA and SourceB are not NANs and SourceA is greater	
	than SourceB.	
	Set Dest to true	
	else	
	Clear Dest to false.	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	N/A	


GT String Compare Flow Chart

SourceA.LEN and SourceB.LEN are handled as unsigned values.

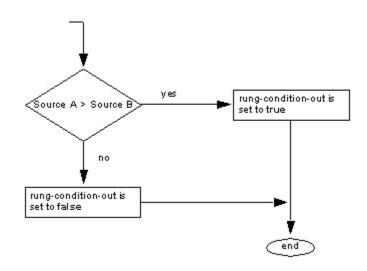


Ladder Diagram

Function Block Diagram

FBD Block

FBD Function



Structured Text

if value_1 > value_2 then
light_1 := 1;
else
light_1 := 0;
end_if;
if value_3 > '1 am EQUAL' then
light_2 := 1;
else
light_2 := 0;

end_if;

GT Flow Chart (True)

Greater Than or Equal To (GE)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the Greater Than or Equal To (GE) instruction and the operator \geq test whether Source A is greater than or equal to Source B.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from GEQ to GE.

Available Languages

Ladder Diagram

	GE	
_	Grtr Than or Eql (A>=B)
	Source A	?
		??
	Source B	?
		??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use the operator \geq with an expression to achieve the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions. on page 851.

Ladder Diagram

Numeric Comparison

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate tag	Value to test against
	INT DINT	INT DINT		Source B
	REAL	LINT		
		USINT UINT		

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
		UDINT ULINT REAL		
		LREAL		
		TIME32		
		DT LDT		
Source B	SINT INT DINT REAL	SINT INT DINT LINT USINT UDINT ULINT REAL LREAL TIME	immediate tag	Value to test against Source A
		TIME32 LTIME DT LDT		

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

String Comparison

Tip: Immediate string literals are only applicable to the CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers.

Operand	Data Type	Format	Description
Source A	String type	immediate literal value	String to test against Source B

Operand	Data Type	Format	Description
		tag	
Source B	String type	immediate literal value	String to test against Source A
		tag	

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
GE	FBD_COMPARE	tag	GE structure

FBD_COMPARE Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does
		not execute and outputs are not updated.
		Default is true.
SourceA	REAL	Value to test against SourceB
SourceB	REAL	Value to test against SourceA

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction is enabled.
Dest	BOOL	Set to true when SourceA is greater than
		or equal to SourceB. Cleared to false when
		SourceA is less than SourceB.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	Data Type	Description
SourceA (top)	SINT	Value to test against SourceB.
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Input Operands (Left Pins)	Data Type	Description
SourceB (bottom)	SINT	Value to test against SourceA.
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type	Description
Dest	BOOL	Set to true when SourceA is greater than
		or equal to SourceB. Cleared to false when
		SourceA is less than SourceB.

See FBD Functions on page 862 .

Affects Math Status Flags

No

Major/Minor Faults

See GE String Compare Flow Chart below for faults.

See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Numeric compare:
	If Source A and Source B are not NANs and Source A is greater
	than or equal to Source B.
	Set Rung-condition-out to true
	else
	Clear Rung-condition-out to false.
	String compare:
	See GEQ String Compare Flow Chart.
	If output is false
	Clear Rung-condition-out to false

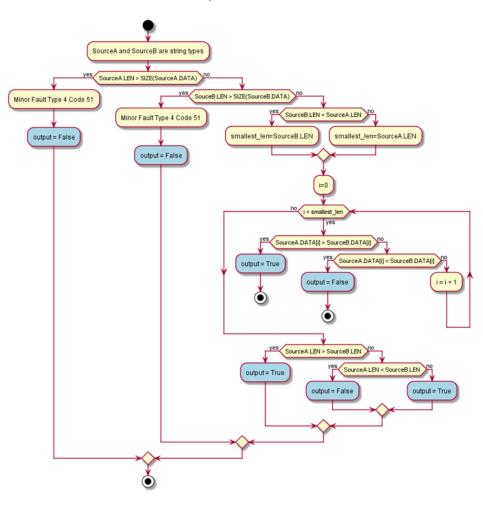
Condition/State	Action Taken
	else
	Set Rung-condition-out to true
Postscan	N/A

Function Block Diagram

FBD Block

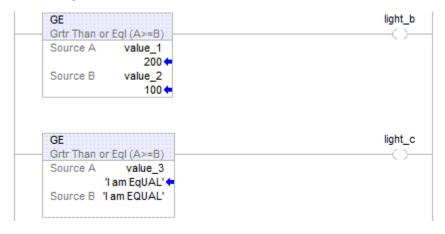
Condition/State	Action Taken	
Prescan	N/A	
EnableIn is false	Set EnableOut to EnableIn	
EnableIn is true	Numeric compare:	
	Set EnableOut to EnableIn	
	If SourceA and SourceB are not NANs and SourceA is greater	
	than or equal to SourceB.	
	Set Dest to true	
	else	
	Clear Dest to false.	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	N/A	

FBD Function

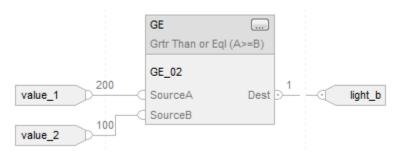


Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken	
Prescan	N/A	
Normal Scan	Numeric compare:	
	If SourceA and SourceB are not NANs and SourceA is greater	
	than or equal to SourceB.	
	Set Dest to true	
	else	
	Clear Dest to false.	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	N/A	


GE String Compare Flow Chart

SourceA.LEN and SourceB.LEN are handled as unsigned values.


Example

Ladder Diagram

Function Block Diagram

FBD Block

FBD Function

Structured Text

```
if value_1 >= value_2 then
```

light_b := 1;

else

light_b := 0;

end_if;

if value_3 >= 'I am EQUAL' then

light_c := 1;

else

light_c := 0;

end_if;

Is Infinity (IsINF)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the Is Infinity (IsINF) instruction tests whether the Source is infinity.

Available Languages

Ladder Diagram

[IsINF	
_	Source	? -
		??

Function Block Diagram

This instruction is not available in Function Block Diagram.

Structured Text

This instruction is not available in structured text.

Operands

Ladder Diagram

Operand	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Format	Description
Source	REAL	tag	Value to test against Infinity.

Affects Math Status Flags

No

Major/Minor Faults

This instruction does not generate any major/minor faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	If Source is +INF or -INF.
	Set Rung-condition-out to true
	else
	Clear Rung-condition-out to false.
Postscan	N/A

Examples

Ladder Diagram

Is Not a Number (IsNAN)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the Is Not a Number (IsNAN) instruction tests whether the source is not a number.

Available Languages

Ladder Diagram

	ISNAN		
-[Source	?	-
		??	

Function Block Diagram

This instruction is not available in Function Block Diagram.

Structured Text

This instruction is not available in structured text.

Operands

Ladder Diagram

Operand	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Format	Description
Source	REAL LREAL	tag	Value to test against Infinity

Affects Math Status Flags

No

Major/Minor Faults

This instruction does not generate any major/minor faults.


Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in	
Rung-condition-in is true	If Source is NAN.	
	Set Rung-condition-out to true	
	else	
	Clear Rung-condition-out to false.	
Postscan	N/A	

Examples

Ladder Diagram

Less Than (LT)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the Less Than (LT) instruction and the operator < tests Source A is less than Source B.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from LES to LT.

Available Languages

Ladder Diagram

	LT	
_	Less Than (A	<b) th="" –<=""></b)>
	Source A	?
		??
	Source B	?
		??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

LT			
Les	s Than	(A <b)< th=""><th></th></b)<>	
LT_	01		
So	IrceA	Dest	9
C So	IrceB		

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use the operator < with an expression to achieve the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions. on page 851

Ladder Diagram

Numeric Comparison

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate	Value to test against
	INT	INT	tag	Source B
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		TIME		
		TIME32		
		LTIME		
		DT		
		LDT		
Source B	SINT	SINT	immediate	Value to test against
	INT	INT	tag	Source A
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		TIME		
		TIME32		
		LTIME		
		DT		
		LDT		

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

String Comparison

Tip: Immediate string literals are applicable to the CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Operand	Data Type	Format	Description
Source A	String type	immediate literal value tag	String to test against Source B
Source B	String type	immediate literal value tag	String to test against Source A

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
LT	FBD_COMPARE	tag	LT structure

FBD_COMPARE Structure

Input Members	Data Type	Description	
EnableIn	BOOL	Enable input. If false, the instruction doe not execute and outputs are not updated	
		Default is true.	
SourceA	REAL	Value to test against SourceB	
SourceB	REAL	Value to test against SourceA	

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction is enabled.
Dest	BOOL	Set to true when SourceA is less than
		SourceB. Cleared to false when SourceA is
		not less than SourceB.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
SourceA (top)	SINT	Value to test against SourceB.

Input Operands (Left Pins)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	
SourceB (bottom)	SINT	Value to test against SourceA.
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type	Description
Dest	BOOL	Set to true when SourceA is less than
		SourceB. Cleared to false when SourceA is
		not less than SourceB.

See FBD Functions on page 862.

Affects Math Status Flags

No

Major/Minor Faults

See LES String Compare Flow Chart below for faults.

See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

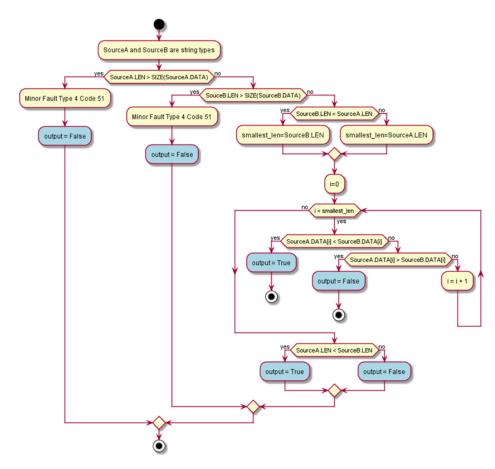
Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Numeric compare:
	If Source A and Source B are not NANs and Source A is less that
	Source B.
	Set Rung-condition-out to true
	else
	Clear Rung-condition-out to false.
	String compare:
	See LES String Compare Flow Chart.
	If output is false
	Clear Rung-condition-out to false
	else
	Set Rung-condition-out to true
Postscan	N/A

Function Block Diagram

FBD Block

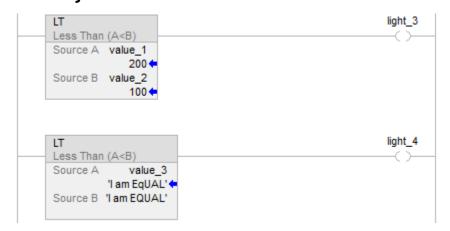
Condition/State	Action Taken	
Prescan	N/A	
EnableIn is false	Set EnableOut to EnableIn	
Enableln is true	Numeric compare:	
	If SourceA and SourceB are not NANs and SourceA is less than	
	SourceB.	
	Set Dest to true	
	else	
	Clear Dest to false.	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	N/A	

FBD Function

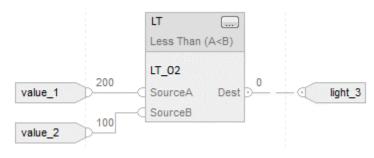

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Numeric compare:
	Set EnableOut to EnableIn

Condition/State	Action Taken
	If SourceA and SourceB are not NANs and SourceA is less than
	SourceB.
	Set Dest to true
	else
	Clear Dest to false.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


LT String Compare Flow Chart

SourceA.LEN and SourceB.LEN are handled as unsigned values.


Example

Ladder Diagram

Function Block Diagram

FBD Block

FBD Function

<_{f}

Structured Text

if value_1 < value_2 then

light_3 := 1;

else

light_3 := 0;

end_if;

if value_3 < 'I am EQUAL' then

light_4 := 1;

else

light_4 := 0;

end_if;

Less Than or Equal To (LE)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the Less Than or Equal To (LE) instruction and the operator <= tests whether Source A is less than or equal to Source B.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from LES to LE.

Available Languages

Ladder Diagram

	LE)	
_	Less Than or Eql (A<=B)
	Source A	?
		??
	Source B	?
		??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	LE	
	Less Than or Eql	(A<=B)
	LE_01	
4	SourceA	Dest 3
þ	SourceB	

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use the operator <= with an expression to achieve the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

Numeric Comparison

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate	Value to test against
	INT	INT	tag	Source B
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		TIME		
		TIME32		
		LTIME		
		DT		
		LDT		
Source B	SINT	SINT	immediate	Value to test against
	INT	INT	tag	Source A
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
		REAL LREAL TIME TIME32 LTIME DT LDT		

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

String Comparison

Tip: Immediate string literals are only applicable to the CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers.

Operand	Data Type	Format	Description
Source A	String type	immediate literal value tag	String to test against Source B
Source B	String type	immediate literal value tag	String to test against Source A

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
LE	FBD_COMPARE	tag	LE structure

FBD_COMPARE Structure

Input Members	Data Type	Description	
EnableIn	BOOL	Enable input. If false, the instruction does	
		not execute and outputs are not updated.	
		Default is true.	

Input Members	Data Type	Description
SourceA	REAL	Value to test against SourceB
SourceB	REAL	Value to test against SourceA

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction is enabled.
Dest	BOOL	Set to true when SourceA is less than or
		equal to SourceB. Cleared to false when
		SourceA is greater than SourceB.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

	Data Type CompactLogix 5380, CompactLogix	
Input Operands (Left Pins)	5480, ControlLogix 5580, Compact	Description
	GuardLogix 5380, and GuardLogix 5580	
	controllers	
SourceA (top)	SINT	Value to test against SourceB.
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	
SourceB (bottom)	SINT	Value to test against SourceA.
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type	Description
Dest	BOOL	Set to true when SourceA is less than or
		equal to SourceB. Cleared to false when
		SourceA is greater than SourceB.

See FBD Functions on page 862.

Affects Math Status Flags

No

Major/Minor Faults

See LE String Compare Flow Chart for faults.

See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Numeric compare:
	If Source A and Source B are not NANs and Source A is less than
	or equal to Source B.
	Set Rung-condition-out to true
	else
	Clear Rung-condition-out to false.
	String compare:
	See LE String Compare Flow Chart.
	If output is false
	Clear Rung-condition-out to false
	else
	Set Rung-condition-out to true
Postscan	N/A

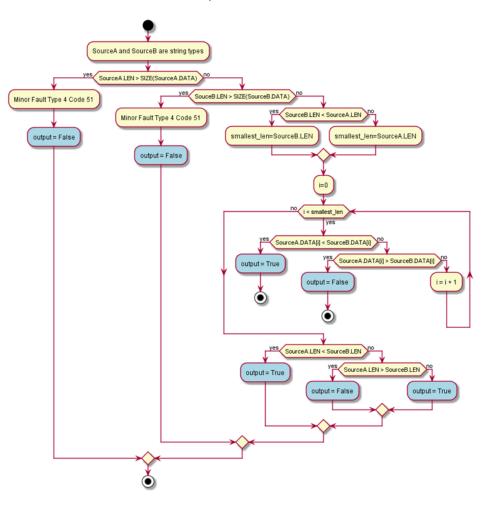
Function Block Diagram

FBD Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn
EnableIn is true	Numeric compare:
	Set EnableOut to EnableIn

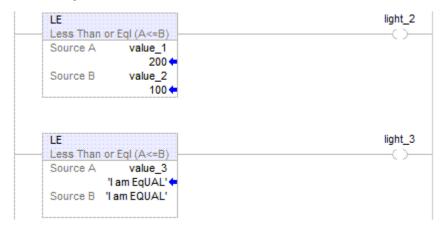
Condition/State	Action Taken
	If SourceA and SourceB are not NANs and SourceA is less than
	or equal to SourceB.
	Set Dest to true
	else
	Clear Dest to false.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

FBD Function

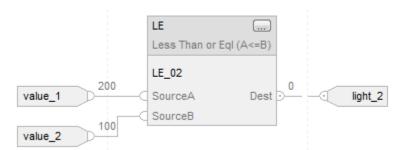


Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Numeric compare:
	If SourceA and SourceB are not NANs and SourceA is less than
	or equal to SourceB.
	Set Dest to true
	else
	Clear Dest to false.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


LE String Compare Flow Chart

SourceA.LEN and SourceB.LEN are handled as unsigned values.



Example

Ladder Diagram

Function Block Diagram

FBD Function

≤_f

Structured Text

if value_1 <= value_2 then

light_2 := 1;

else

light_2 := 0;

end_if;

if value_3 <= 'I am EQUAL' then

light_3 := 1;

else

light_3 := 0;

end_if;

Limit (LIMIT)

This table lists the controllers and applications that support this instruction.

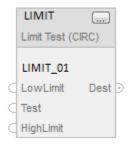
Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The LIMIT instruction tests if the Test value is within the range of the Low and High Limits as indicated in the LIMIT Flow Chart (True).

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from LIM to LIMIT.

If any operand is Not A Number (NAN), the .EnableOut is cleared to false.

Available Languages


Ladder Diagram

LIMIT	
Limit Test (CIR	(D)
Low Limit	?
	??
Test	?
	??
High Limit	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

	LIMI	Γ_{f}	
-<	LowLimit	Dest	Þ
	Test		
	HighLimit		

Structured Text

This instruction is not available in structured text.

Operands

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions.

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Low Limit	SINT	SINT	immediate	Value of lower limit.
	INT	INT	tag	
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Test	SINT	SINT	immediate	Value to test against
	INT	INT	tag	limits.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
High Limit	SINT	SINT	immediate	Value of upper limit.
	INT	INT	tag	
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Ladder Diagram

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
LIMIT	FBD_LIMIT	tag	LIMIT structure

FBD_LIMIT Structure

Input Members	Data Type	Description	
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.	
LowLimit	REAL	Default is true. Value of lower limit.	
Test	REAL	Value to test against limits.	
HighLimit	REAL	Value of upper limit.	

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction is enabled.
Dest	BOOL	Set to true if Limit test is true. Cleared to
		false if Limit test is false.

FBD Function

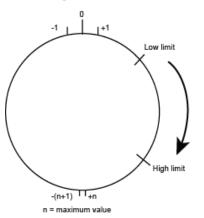
Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Low Limit	SINT	Value of lower limit
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	
Test	SINT	Value to test against limits.
	INT	
	DINT	
	LINT	

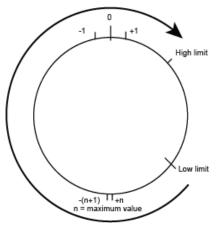
Input Operands (Left Pins)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
	USINT UINT UDINT ULINT REAL LREAL	
High Limit	SINT INT DINT LINT USINT UDINT ULINT REAL LREAL	Value of upper limit.

Output Operand (Right Pin)	Data Type	Description
Dest	BOOL	Set to true if Limit test is true. Cleared to
		false if Limit test is false.

See FBD Functions on page 862.


Operation

This section illustrates the operation for the LIMIT instruction.


Low Limit < High Limit

Low Limit ≥ High Limit

The instruction is true if the test value is equal to or between the low and high limit.

The instruction is true if the test value is equal to outside the low and high limit

If Low Limit:	And if the test value is:	Then the EnableOut is:
< or = to High Limit	equal to or between limits	true
	not equal to or outside limits	false
> High Limit	equal to or outside limits	true
	not equal to or inside limits	false

Signed integers transition from the maximum positive number to the maximum negative number when the most significant bit is true. For example, in 16-bit integers (INT type), the maximum positive integer is 32,767, which is represented in hexadecimal as 16#7FFF (bits 0 through 14 are all true). If that number increments by one, the result is 16#8000 (bit 15 is true). For signed integers, hexadecimal 16#8000 is equal to -32,768 decimal. Incrementing from this point on until all 16 bits are set ends up at 16#FFFF, which is equal to -1 decimal.

This can be shown as a circular number line. The LIMIT instruction starts at the Low Limit and increments clockwise until it reaches the High Limit. Any Test value in the clockwise range from the Low Limit to the High Limit sets the EnableOut to true. Any Test value in the clockwise range from the High Limit to the Low Limit clears the EnableOut to false.

If any operand is Not A Number (NAN), the .EnableOut is cleared to false.

Affects Math Status Flags

No

Major/Minor Faults

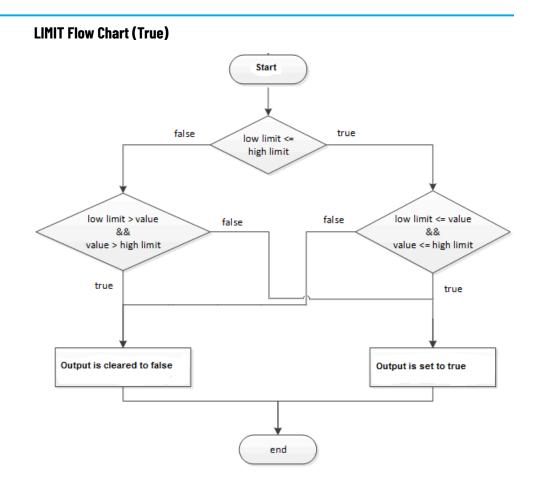
None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	See LIMIT Flow Chart (True)
	If output is true
	Set Rung-condition-out to true.
	else
	Clear Rung-condition-out to false.
Postscan	N/A

Function Block Diagram

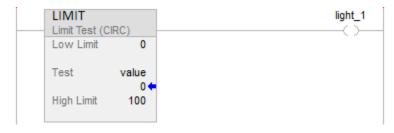

FBD Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn.
Enableln is true	Set EnableOut to EnableIn.
	See LIM Flow Chart (True)
	Dest = output
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

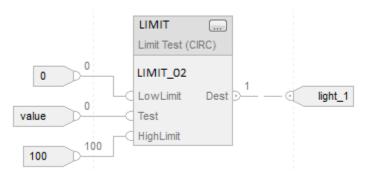
FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

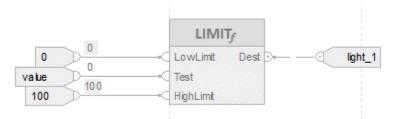
Condition/State	Action Taken
Prescan	N/A
Normal Scan	See LIMIT Flow Chart (True)
	Dest = output
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A



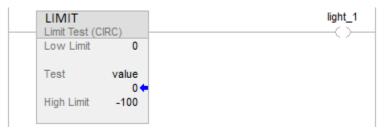
Examples


Example 1: Low Limit <= High Limit

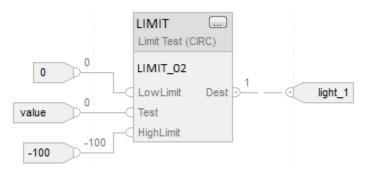
When Test value is equal to or greater than Low Limit, and Test value is less than or equal to High Limit, light_1 is set.


Ladder Diagram

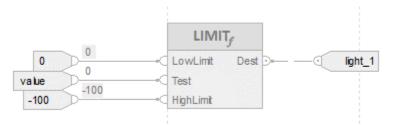
Function Block Diagram


FBD Function

Example 2: Low Limit > High Limit


When value > or = to 0 or value < or = to -100, set light_1 to true. If value < 0 and value > -100, clear light_1 to false.

Ladder Diagram



Function Block Diagram

FBD Block

FBD Function

Mask Equal To (MEQ)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The MEQ instruction passes the Source and Compare values through a Mask and compares the results.

Available Languages

Ladder Diagram

MEQ	
Mask Equal	
Source	?
	??
Mask	?
	??
Compare	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	MEQ		
	Mask Equal		
	MEQ_01		
C	Source	Dest	Þ
\subset	Mask		
9	Compare		

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

MEQ,

Structured Text

This instruction is not available in structured text.

Operands

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source	SINT	SINT	immediate	Value to test against
	INT	INT	tag	Compare.
	DINT	DINT		
		LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
Mask	SINT	SINT	immediate	Which bits to block or
	INT	INT	tag	pass.
	DINT	DINT		
		LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
Compare	SINT	SINT	immediate	Value to test against
	INT	INT	tag	Source.
	DINT	DINT		
		LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
MEQ	FBD_MASK_EQUAL	tag	MEQ structure

FBD_MASK_EQUAL Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is true.
Source	DINT	Value to test against Compare.
Mask	DINT	Defines which bits to block, such as mask.
Compare	DINT	Value to test against Source.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed without fault when it was enabled.
Dest	BOOL	Set to true when result is true. Cleared to false when result is false.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

	Data Type	
	CompactLogix 5380, CompactLogix	
Input Operands (Left Pins)	5480, ControlLogix 5580, Compact	Description
	GuardLogix 5380, and GuardLogix 5580	
	controllers	
Source	SINT	Value to test against Compare.
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
Mask	SINT	Which bits to block or pass.
	INT	
	DINT	
	LINT	

	Data Type	
	CompactLogix 5380, CompactLogix	
Input Operands (Left Pins)	5480, ControlLogix 5580, Compact	Description
	GuardLogix 5380, and GuardLogix 5580	
	controllers	
	USINT	
	UINT	
	UDINT	
	ULINT	
Compare	SINT	Value to test against Source.
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	A SINT or INT tag is converted to a DINT value by zero-fill.	

Output Operand (Right Pin)	Data Type	Description
Dest	BOOL	Set to true when result is true. Cleared to
		false when result is false.

See FBD Functions on page 862.

Operation

A "1" in the mask means the data bit is passed. A "0" in the mask means the data bit is blocked. Typically, the Source, Mask, and Compare values are all the same data type.

If using SINT or INT data type, the instruction fills the upper bits of that value with 0s so that it is the same size as the DINT data type.

Enter an immediate mask value

When entering a mask, the programming software defaults to decimal values. To enter a mask using another format, precede the value with the correct prefix.

Prefix	Description
16#	hexadecimal, such as 16#0F0F
8#	octal, such as 8#16
2#	binary, such as 2#00110011

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

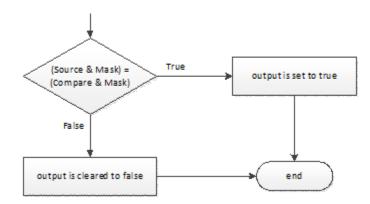
Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Refer to MEQ Flow Chart (True).
	If output is true
	Set Rung-condition-out to true
	else
	Clear Rung-condition-out to false
Postscan	N/A

Function Block Diagram

FBD Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn.
EnableIn is true	Set EnableOut to EnableIn.
	Refer to MEQ Flow Chart (True).
	If output is true
	Set Dest to true
	else
	Clear Dest to false
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

FBD Function



Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Refer to MEQ Flow Chart (True).
	If output is true

Condition/State	Action Taken
	Set Dest to true
	else
	Clear Dest to false
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

MEQ Flow Chart (True)

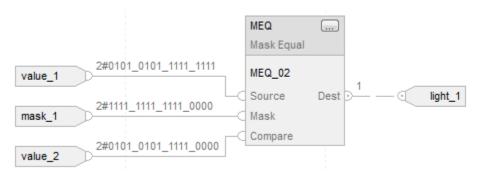
Examples

Example 1

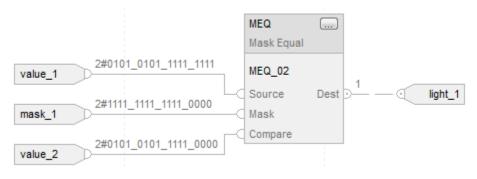
If the masked value_1 is equal to the masked value_2, set light_1 to true. If the masked value_1 is not equal to the masked value_2, clear light_1 to false.

This example shows that the masked values are equal. A 0 in the mask restrains the instruction from comparing that bit (indicated by an x in the example).

Ladder Diagram


value_1	010101010101111111111
mask_1	111111111111110000
Masked	010101010111111

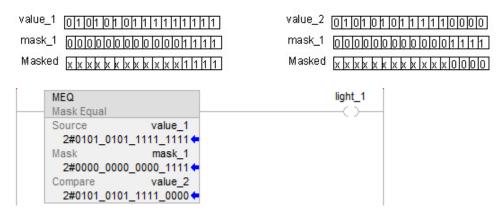
MEQ	
Mask Equal	
Source	value_1
2#0101_0101_	1111_1111 🕈
Mask	mask_1
2#1111_1111_	1111_0000 🗲
Compare	value_2
2#0101_0101_	1111_0000 🕈


value_2	010101010111110000
mask_1	11111111111110000
Masked	

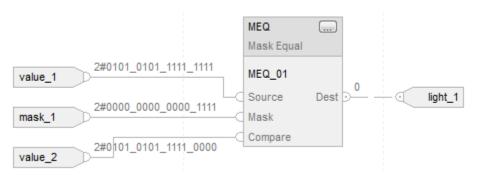
light_1	

Function Block Diagram

FBD Function



Example 2


If the masked value_1 is equal to the masked value_2, set light_1 to true. If the masked value_1 is not equal to the masked value_2, clear light_1 to false.

This example shows that the masked values are not equal. A 0 in the mask restrains the instruction from comparing that bit (indicated by an x in the example).

Ladder Diagram

Function Block Diagram

FBD Function

2#0104_0404_4444_4444	MEQ_f	
value_1 2#0101_0101_1111_1111 2#1111_1111_1111_0000	Source Dest	⊇— — 🤄 light_1
	Mask	
value_2	Compare	

Not Equal To (NE)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the Not Equal To (NE) instruction and the <> operator tests whether Source A is not equal to Source B.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from NEQ to NE.

Available Languages

Ladder Diagram

	NE	
_	Not Equal	-
	Source A	?
		??
	Source B	?
		??

Function Block Diagram

Function Block Diagram supports these elements:

	NE	
	Not Equal	
	NE_01	
¢	SourceA	Dest 3
q	SourceB	

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use t

Tip: Use the <> operator with an expression to achieve the same result. Refer to <u>Structured Text Syntax</u> on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions.

Ladder Diagram

Numeric Comparison

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate	Value to test against
	INT	INT	tag	Source B
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
		ULINT REAL LREAL TIME TIME32 LTIME DT		
Source B	SINT INT DINT REAL	LDT SINT INT DINT LINT USINT UDINT ULINT REAL LREAL TIME TIME TIME DT LDT	immediate tag	Value to test against Source A

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

String Comparison

Tip: Immediate string literals are only applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers.

Operand	Data Type	Format	Description
Source A	String type	immediate literal value	String to test against Source B
		tag	

Operand	Data Type	Format	Description
Source B	String type	immediate literal value	String to test against Source A
		tag	

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
NEQ	FBD_COMPARE	tag	NE structure

FBD_COMPARE Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.
		Default is true.
SourceA	REAL	Value to test against SourceB.
SourceB	REAL	Value to test against SourceA.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction is enabled.
Dest	BOOL	Set to true when SourceA is not equal to
		SourceB. Cleared to false when SourceA is
		equal to SourceB.

FBD Function

Tip: FBD Function is applicable to the CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	Data Type	Description
SourceA (top)	SINT	Value to test against SourceB
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	
SourceB (bottom)	SINT	Value to test against SourceA.

Input Operands (Left Pins)	Data Type	Description
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type	Description
Dest	BOOL	Set to true when SourceA is not equal to
		SourceB. Cleared to false when SourceA is
		equal to SourceB.

SeeFBD Functions on page 862FBD Functions

Affects Math Status Flags

No

Major/Minor Faults

See NE String Compare Flow Chart for faults.

See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Numeric compare:
	If Source A or Source B is NAN or Source A is not equal to Source
	В.
	Set Rung-condition-out to true
	else
	Clear Rung-condition-out to false.
	String compare:
	See NE String Compare Flow Chart.
	If output is false
	Clear Rung-condition-out to false
	else

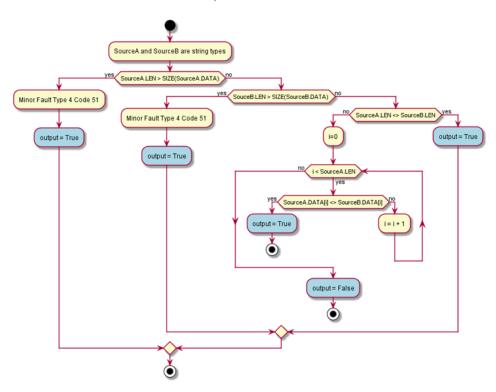
Condition/State	Action Taken
	Set Rung-condition-out to true
Postscan	N/A

Function Block Diagram

FBD Block

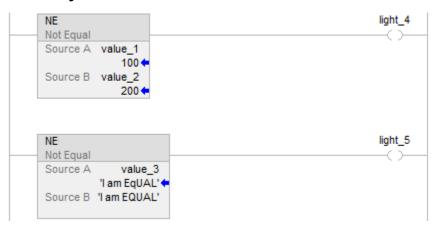
Condition/State	Action Taken
Prescan	N/A
Enableln is false	Set EnableOut to EnableIn
EnableIn is true	Numeric compare:
	Set EnableOut to EnableIn
	If SourceA or SourceB is NAN or SourceA is not equal to SourceB.
	Set Dest to true
	else
	Clear Dest to false.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

FBD Function

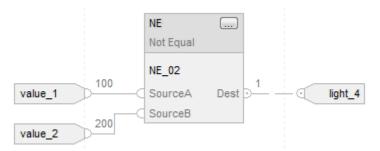


Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Numeric compare:
	If SourceA or SourceB is NAN or SourceA is not equal to SourceB.
	Set Dest to true
	else
	Clear Dest to false.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


NE String Compare Flow Chart

SourceA.LEN and SourceB.LEN are handled as unsigned values.


Examples

Ladder Diagram

Function Block Diagram

FBD Block

FBD Function

Structured Text

if value_1 <> value_2 then

light_4 := 1;

else

light_4 := 0;

end_if;

if value_3 <> 'I am EQUAL' then

light_5 := 1;

else

light_5 := 0;

end_if;

Valid operators

This table lists the valid operators.

•		Allowed in							
Operator Description	Array Index	FSC	CMP	CMP	СРТ	Safety			
+	add	Х	х	Х	Х	х	Х		
-	subtract/neg	Х	Х	Х	Х	Х	Х		
	ate								
*	multiply	Х	Х	Х	Х	х	Х		
1	divide	Х	Х	Х	Х	х	Х		
=	equal		х	Х			Х		
<	less than		Х	Х			Х		
<=	less than or		Х	Х			Х		
	equal								
>	greater than		Х	Х			Х		
>=	greater than		Х	Х			Х		
	or equal								
\diamond	not equal		Х	Х			Х		

		Allowed in							
Operator	Description	Array Index	FSC	CMP	CMP	СРТ	Safety		
**	exponent (x		Х	х	х	х			
	to y)								
&&	Logical AND		Х	Х			Х		
I	Logical OR		Х	Х			Х		
~~	Logical XOR		х	х			Х		
!	Logical NOT		х	х			Х		
ABS	absolute value		Х	х	Х	х	Х		
ACOS	arc cosine		Х	х	х	х	Х		
AND	bitwise AND	х	Х	х	х	х	Х		
ASIN	arc sine		х	х	х	х	Х		
ATAN	arc tangent		Х	х	х	х	Х		
ATAN2	two-argument arctangent		X	Х	Х	Х	x		
COS	cosine		Х	х	х	x	Х		
DEG	radians to degrees		Х	х	х	Х			
BCD_TO	BCD to integer	x	х	x	x	x			
IsINF	ls infinity		X	x			Х		
Isnan	ls not a number		Х	Х			х		
LN	natural log		х	х	х	х			
LOG	log base 10		Х	х	х	х			
MOD	modulo-divide		Х	x	x	x	Х		
NOT	bitwise NOT	Х	X	x	x	x	Х		
OR	bitwise OR	Х	X	x	х	x	Х		
RAD	degrees to radians		Х	Х	X	Х			
SIN	sine		X	х	х	Х	Х		
SQRT	square root	Х	X	х	х	x			
TAN	tangent		X	x	х	x	Х		
TOD	integer to BCD	Х	X	x	x	x			
TRUNC	truncate		X	x	х	x			
XOR	bitwise exclusive OR	Х	Х	X	Х	Х	x		

Expressions

Expressions are implemented in the Logix Designer application to be passed in as an operand expression to an instruction, or to specify a variable index, as a subscript expression, in an array. These sections describe the differences between the two.

The maximum length for an operand expression is 4096 characters.

Operand Expressions

Operand expressions are provided as an operand to the following instructions: CPT, FAL, FSC, and CMP. Each of these instructions documents which operators are allowed in the expression and their precedence. CPT and FAL have identical operators and precedence. CMP and FSC have a slightly expanded operator list and therefore a different precedence list of operators.

Subscript Expressions

You can also use a subscript expression to compute an array subscript. Subscripts are processed differently than operands. See the Array Index column in the table above for a list of operators that function as subscript expressions.

What is zero fill?

There are two ways a smaller integer type can be converted to a larger one:

- Zero fill
- Sign extension

The method employed depends on the instruction that is using the operand.

For zero-fill, all bits above the range of the smaller type are filled with 0.

For example, SINT: 16#87 = -121 converted to a DINT yields 16#00000087 = 135

For sign-extension, all bits above the range of the smaller type are filled with the sign bit of the smaller type.

For example:SINT: 16#87 = -121 converted to a DINT yields 16#FFFFF87 = -121

Compute/Math Instructions

The compute/math instructions evaluate arithmetic operations using an expression or a specific arithmetic instruction.

Available Instructions

Ladder Diagram

CPT on page	ADD on page	SUB on page	MUL on page	DIV on page	MOD on	SQRT on	NEG on page	ABS on page
401	395	433	417	405	page 411	page 427	422	390

Function Block Diagram

FBD Block

ADD on page	SUB on page	MUL on page	DIV on page	MOD on page	SQRT on page	NEG on page	ABS on page
395	433	417	405	411	427	422	390

FBD Function

ADD on page	SUB on page	DIV on page	MOD on page	SQRT on page	NEG on page	ABS on page
395	433	405	411	427	422	390

Structured Text

SORT on page 427 ABS on page 390	IRT on page 427
----------------------------------	-----------------

If you want to:	Use this instruction:
evaluate an expression	CPT
add two values	ADD
subtract two values	SUB
multiply two values	MUL
divide two values	DIV
determine the remainder after one value is divided by another	MOD
calculate the square root of a value	SORT
take the opposite sign of a value	NEG
take the absolute value of a value	ABS

You can mix data types, but loss of accuracy and rounding error might occur and the instruction takes more time to execute. Check the S:V bit to see whether the result was truncated.

The bold data types indicate optimal data types. An instruction executes faster and requires less memory if all the operands of the instruction use the same optimal data type, typically DINT or REAL.

A compute/math instruction executes once each time the instruction is scanned as long as the rung-condition-in is true. If you want the expression evaluated only once, use any one-shot instruction to trigger the instruction.

Absolute Value (ABS)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

When enabled, the ABS instruction and operator take the absolute value of Source. The instruction stores the result in Dest while the operator simply returns the result. An overflow is indicated if the result is the maximum negative integer value, e.g. -128 for SINT, -32,768 for INT and -2,147,483,648 for DINT.

Available Languages

Ladder Diagram

ABS Absolute Valu	10
Source	2
000.00	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use ABS as an operator in an expression to compute the same result. Refer to Structured Text Syntax

on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source	SINT	SINT	immediate	Value of which to take
	INT	INT	tag	the absolute value.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Dest	SINT	SINT	tag	Tag to store result of
	INT	INT		the instruction.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

Operand	Data Type	Format	Description
ABS	FBD_MATH_ADVANCED	tag	ABS structure

FBD_MATH_ADVANCED Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.
		Default is true.
Source	REAL	Value of which to take the absolute value.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operand (Left Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Source	SINT	Value of which to take the absolute value.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Dest	SINT	Result of the function.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Dest = absolute value of Source.
Postscan	N/A

Function Block Diagram

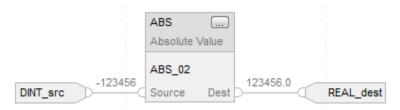
FBD Block

Condition/State	Action Taken
Prescan	N/A
Enableln is false.	Set EnableOut to EnableIn.
Enableln is true	Dest = absolute value of Source.
	If overflow occurs
	Clear EnableOut to false.
	else
	Set EnableOut to true.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = absolute value of Source
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


Examples

Ladder Diagram

	ABS	
_	Absolute Value	
	Source value_1	
	-4 Dest value_1_absolute 4	+ +

Function Block Diagram

FBD Block

FBD Function

Structured Text

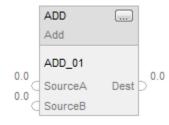
DINT_dest := ABS(DINT_src);

Add (ADD)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

When enabled, the ADD instruction and the operator '+' adds Source A to Source B.

Available Languages


Ladder Diagram

ADD	
Add	
Source A	?
	??
Source B	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use the operator '+' in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
SourceA	SINT INT DINT REAL	SINT INT DINT LINT USINT UDINT UDINT ULINT REAL LTIME* TIME2* TIME32* LDT* DT*	immediate tag	Value to add to Source B

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
SourceB	SINT INT DINT REAL	SINT INT DINT LINT USINT UUINT ULINT REAL LTIME* TIME* TIME2* LDT* DT*	immediate tag	Value to add to Source A
Dest	SINT INT DINT REAL	SINT INT DINT LINT USINT UDINT ULINT REAL LTIME* TIME2* LDT* DT*	tag	Tag to store result of the instruction

NOTE:

*Keep these considerations in mind when using relative time (LTIME, TIME32, TIME) and absolute time (LDT, DT) data types in ADD instructions:

- If both Source A and Source B are relative time, the Dest must be relative time.
- If Source A is relative time and Source B is absolute time or vice versa, the Dest must be absolute time.
- In ADD instructions, Source A and Source B cannot both be absolute time.

See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
ADD	FBD_MATH	tag	ADD structure

FBD_MATH Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.
		Default is true.
SourceA	REAL	Value to add to SourceB.
SourceB	REAL	Value to add to SourceA.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only	Description
SourceA (top)	SINT	Value to add to SourceB.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	
SourceB (bottom)	SINT	Value to add to SourceA.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only	Description
Dest	DINT	Result of the function.
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

See FBD Functions on page 440.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	

Controllers	Affects Math Status Flags
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in Dest = Source A + Source B
Postscan	N/A

Function Block Diagram

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn
Enableln is true	Dest = SourceA + SourceB
	If overflow occurs
	Clear EnableOut to false
	else
	Set EnableOut to true
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

Example

Ladder Diagram

ADD	
Add	
Source A	DINT_srcA
	2¢
Source B	DINT_srcB
	3 🕈
Dest	DINT_dest
	54

Function Block Diagram

FBD Block

FBD Function

+,

Structured Text

DINT_dest := DINT_srcA + DINT_srcB;

Compute (CPT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

When enabled, the CPT instruction evaluates the expression and places the result in the Dest.

The CPT instruction enables complex expressions in one instruction.

When evaluating the expression, all non-LREAL operands convert to LREAL before performing calculations if either of these conditions are true:

- Any operand in the expression is LREAL.
- The Dest is LREAL.

When evaluating the expression, all non-REAL operands will be converted to REAL before performing calculations if any operand or Dest in the expression is NOT LREAL, and any of these conditions are true:

- Any operand in the expression is REAL.
- The expression contains SIN, COS, TAN, ASN, ACS, ATN, LN, LOG, DEG or RAD.
- The Dest is REAL.

There are rules for allowable operators in safety applications. See Valid Operators.

Available Languages

	CPT		
-	Compute		_
	Dest	?	
		??	
	Expression	?	

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Dest	SINT INT REAL	SINT INT DINT LINT USINT UINT ULINT REAL LREAL	tag	Tag to store the result.
Expression	SINT INT DINT	SINT INT DINT	immediate tag	An expression consisting of tags and/or immediate

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
	REAL	LINT USINT UINT UDINT REAL LREAL		values separated by operators.

Formatting expressions

For each operator used in an expression, one or two operands (tags or immediate values) must be provided. Use the following table to format operators and operands within an expression.

For operators that operate on:	Use this format:	Example
One operand	operator(operand)	ABS(tag)
Two operands	operand_a operator operand_b	tag_b + 5
		tag_c AND tag_d
		(tag_e**2) MOD (tag_f / tag_g)

Determine the order of operation

The instruction performs the operations in the expressions in a prescribed order. Specify the order of operation by grouping terms within parentheses. This forces the instruction to perform an operation within the parentheses ahead of the other operations.

Operations of equal order are performed from left to right.

Order	Operation
1	()
2	ABS, ACOS, ASIN, ATAN, COS, DEG, BCD_TO, LN, LOG, RAD, SIN, SQRT, TAN, TO_BCD, TRUNC
3	**
4	- (negate), NOT
5	*, /, MOD
6	- (subtract), +
7	AND
8	XOR
9	OR

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.	
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.	
	The instruction evaluates the expression and places the result in the Dest.	
Postscan	N/A	

Examples

Ladder Diagram

Example 1

When enabled, the CPT instruction evaluates value_1 multiplied by 5 and divides that result by the result of value_2 divided by 7 and places the final result in result_1.

result_1	25.0	Float	REAL
	10	Decimal	DINT
]	14	Decimal	DINT

CPT		
 Compute		
Dest	result_1	
	25.0 🖛	
Expression	(value_1*5)/(value_2/7)	

Example 2

When enabled, the CPT instruction truncates float_value_1 and float_value_2 to the power of two and divides the truncated float_value_1 by that result, and then stores the remainder after the division in float_value_result_cpt.

	CPT	
_	Compute	
	Dest	float_value_result_cpt
		2.0 🖛
	Expression	(TRN(float_value_1))MOD(trn(float_value_2)**2)

float_value_result_cpt	2.0	Float	REAL
float_value_1	10.5	Float	REAL
float_value_2	2.5	Float	REAL

Divide (DIV)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

When enabled, the DIV instruction and the operator '/' divides Source A by Source B.

Available Languages

Ladder Diagram

DIV	
Divide	-
Source A	?
	??
Source B	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	DIV Divide		
0.0 0.0 0.0	DIV_01 SourceA SourceB	Dest	> ^{0.0}

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use the operator '/' in an expression to compute the same result. Refer to *Structured Text Syntax* for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
SourceA	SINT	SINT	immediate	Value of the dividend
	INT	INT	tag	
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
SourceB	SINT	SINT	immediate	Value of the divisor
	INT	INT	tag	
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
		ULINT REAL LREAL		
Dest	SINT INT DINT REAL	SINT INT DINT LINT USINT UDINT REAL LREAL	tag	Tag to store the result of the instruction.

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
DIV	FBD_MATH	tag	DIV structure

FBD_MATH Structure

Input Members	Data Type	Description
Enablein	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.
		Default is true.
Source A	REAL	Value of the dividend.
Source B	REAL	Value of the divisor.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

	CompactLogix 5380, CompactLogix	
	5480, ControlLogix 5580, Compact	
Input Operands (Left Pins)	GuardLogix 5380, and GuardLogix 5580	Description
	controllers	
	Data Type	
SourceA (top)	SINT	Value of the dividend.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	
SourceB (bottom)	SINT	Value of the divisor
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	
	CompactLogix 5380, CompactLogix	
	5480, ControlLogix 5580, Compact	
Output Operands (Right Pin)	GuardLogix 5380, and GuardLogix 5580	Description
	controllers	
	Data Type	
Dest	DINT	Result of the function
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

See FBD Functions.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
Source_B = 0	4	4

See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in 1,2 Dest = Source A / Source B
Postscan	N/A

Function Block Diagram

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn
EnableIn is true	1,2 Dest = SourceA / SourceB
	If overflow occurs
	Clear EnableOut to false
	else
	Set EnableOut to true
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = SourceA / SourceB
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

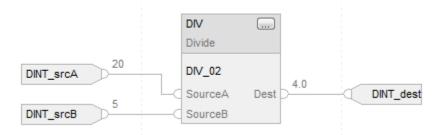
If SourceB is zero the result will be SourceA for integer divides and 1.\$ for floating point divides. This condition can

also cause minor overflow faults on page 145.

For integer destination and source operands the result is truncated.

Examples

1


2

Ladder Diagram

DIV	
Divide	
Source A	DINT_srcA
	20 <
Source B	DINT_srcB
	5 🕈
Dest	DINT_dest
	4 🔶

Function Block Diagram

FBD Block

FBD Function

Structured Text

DINT_dst := DINT_srcA / DINT_srcB;

Modulo (MOD)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

When enabled, the MOD instruction and the operator divides Source A by Source B and places the remainder in Dest. This is done using the algorithm:

Dest = Source A - (truncate (Source A / Source B) * Source B)

Available Languages

Ladder Diagram

MOD	
Modulo	
Source A	?
	??
Source B	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	MOD	
	Modulo	
	MOD_01	
þ	SourceA	Dest
q	SourceB	

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use MOD as an operator in an expression to compute the same result. Refer to Structured Text Syntax

on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

These are the operands for Ladder Diagram.

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate	Value of the dividend.
	INT	INT	tag	
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Source B	SINT	SINT	immediate	Value of the divisor.
	INT	INT	tag	
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Dest	SINT	SINT	tag	Tag to store result of
	INT	INT		the instruction.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
MOD	FBD_MATH	tag	MOD structure

FBD_MATH Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is true.
SourceA	REAL	Value of the dividend.
SourceB	REAL	Value of the divisor.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

۱ 🕥

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

	Data Type CompactLogix 5380, CompactLogix	
Input Operands (Left Pins)	5480, ControlLogix 5580, Compact	Description
	GuardLogix 5380, and GuardLogix 5580	
	controllers	
SourceA (top)	SINT	Value of the dividend.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	
SourceB (bottom)	SINT	Value of the divisor
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Dest	DINT	Result of the function.
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

See FBD Functions on page 862.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	

Controllers	Affects Math Status Flags
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
Source B = O	4	4

See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in Dest is set (to the remainder) as described in the Description section.
Postscan	N/A

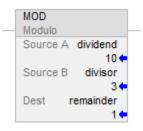
Function Block Diagram

FBD Block

Condition/State	Action Taken	
Prescan	N/A	
EnableIn is false	Set EnableOut to EnableIn	
Enableln is true	Dest is set (to the remainder) as described in the Description section. If an overflow occurs Clear EnableOut to false	
	else Set EnableOut to true	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	N/A	

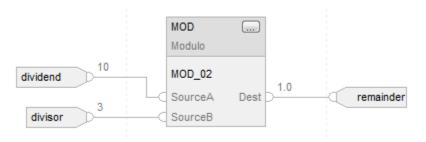
FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.


Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest is set (to the remainder) as described in the Description section.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

Tip: If Source B is 0, the result is 0 and a minor fault is generated.

Examples


Ladder Diagram

Divide dividend by divisor and place the remainder in remainder. In this example, 3 goes into 10, three times, with a remainder of 1.

Function Block Diagram

FBD Block

FBD Function

%₊

Structured Text

remainder := dividend MOD divisor;

Multiply (MUL)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

When enabled, the MUL instruction and the operator '*' multiplies Source A with Source B.

Available Languages

Ladder Diagram

MUL	
Multiply	
Source A	?
	??
Source B	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

1
r

Tip: Use the operator ^{**} in an expression to compute the same result. Refer to *Structured Text Syntax* for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate	Value of the
	INT	INT	tag	multiplicand.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Source B	SINT	SINT	immediate	Value of the multiplier.
	INT	INT	tag	
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Dest	SINT	SINT	tag	Tag to store the result
	INT	INT		of the instruction.

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
MUL	FBD_MATH	tag	MUL structure

FBD_MATH Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is true.
SourceA	REAL	Value of the multiplicand.
SourceB	REAL	Value of the multiplier.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Description
SourceA (top)	SINT	Value of the multiplicand.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	
SourceB (bottom)	SINT	Value of the multiplier.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Description
Dest	DINT UDINT	Result of the function.
	LINT	
	ULINT	
	REAL	
	LREAL	

See FBD Functions.

Affects Math Status Flags

Controllers	Affects Math Status Flag
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	

Controllers	Affects Math Status Flag
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

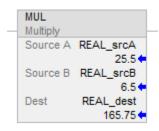
Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in Dest = Source A x Source B
Postscan	N/A

Function Block Diagram

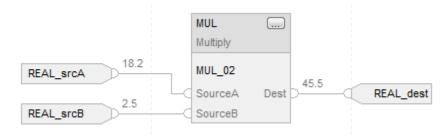
Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn
Enableln is true	Dest = SourceA x SourceB
	If overflow occurs
	Clear EnableOut to false
	else
	Set EnableOut to true
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

FBD Function


Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = Source A x Source B
Instruction first run	N/A

Condition/State	Action Taken
Instruction first scan	N/A
Postscan	N/A


Examples

Ladder Diagram

Function Block Diagram

FBD Block

FBD Function

Structured Text

REAL_dest := REAL_srcA * REAL_srcB;

Negate (NEG)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

When enabled, the NEG instruction and operator subtract the Source value from zero.

Available Languages

	NEG	
-	Negate	-
	Source	?
		??
	Dest	?
		??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	NEG		
	Negate		
	NEG_01		
0.0	Source	Dest	> 0.0

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use operator '-' in an expression to compute the same result. Refer to <u>Structured Text Syntax on page</u> 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source	SINT	SINT	immediate	Value to negate
	INT	INT	tag	
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Dest	SINT	SINT	tag	Tag to store result of
	INT	INT		the instruction.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
NEG	FBD_MATH_ADVANCED	tag	NEG structure

FBD_MATH_ADVANCED Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is true.
Source	REAL	Value to negate.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operand (Left Pin)	Data Type	Description
Source	SINT	Value to negate.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type	Description
Dest	DINT	Result of the function.
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

See FBD Functions on page 862.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Dest = 0 - Source.
Postscan	N/A

Function Block Diagram

FBD Block

Condition/State	Action Taken
Prescan	N/A
Enableln is false	Set EnableOut to EnableIn.
Enableln is true	Dest = 0 - Source.
	If overflow occurs
	Clear EnableOut to false
	else
	Set EnableOut to true
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = 0 - Source.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

Examples

NEG	
Negate	-
Source	?
	??
Dest	?
	??

Function Block Diagram

FBD Block

FBD Function

Structured Text

DINT_dest := -DINT_src;

Square Root (SQRT)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The Square Root (SQRT) instruction and operator computes the square root of the Source and places the result in Dest.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from SQR to SQRT.

Available Languages

SQRT	
 Square Root	
Source	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	SQRT		
	Square Ro	ot	
	SQRT_01		
0.0	Source	Dest	> ^{0.0}

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use SQRT as an operator in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source	SINT	SINT INT	immediate tag	Computes the square root of this value.
	DINT REAL	DINT LINT		
		USINT UINT UDINT		
		ULINT REAL		
Dest	SINT INT	LREAL SINT INT	tag	Tag to store the result of the instruction.
	DINT REAL	DINT LINT USINT		
		UINT UDINT ULINT REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
SQRT	FBD_MATH_ADVANCED	tag	SQRT structure

FBD_MATH_ADVANCED Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is true.
Source	REAL	Find the square root of this value.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

	Data Type	Description	
	CompactLogix 5380, CompactLogix		
Input Operand (Left Pin)	5480, ControlLogix 5580, Compact		
	GuardLogix 5380, and GuardLogix 5580		
	controllers		
SourceA	SINT	Computes the square root of this value	
	USINT		
	INT		
	UINT		
	DINT		
	UDINT		
	LINT		
	ULINT		
	REAL		
	LREAL		

Output Operand (Right Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580	Description
	controllers	
Dest	DINT	Result of the function.
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

See FBD Functions on page 862.

Description

If the Dest is not an LREAL/REAL, the instruction handles the fractional portion of the result as follows:

					(For			
	(For				CompactLo			
	CompactLo				gix 5380,			
	gix 5370,				CompactLo			
	ControlLo				gix 5480,			
	gix 5570,				ControlLo			
	Compact				gix 5580,			
lf the	GuardLogix				Compact			
Source is:	5370, and	Example			GuardLogix	Example		
000100101	GuardLogix				5380, and			
	5570				GuardLogix			
	controllers)				5580			
	The				controllers)			
	fractional				The			
	portion of				fractional			
	the result:				portion of			
			1		the result:			
any	Truncates	Source	DINT	3	Rounds	Source	DINT	3
elementary		Dest	DINT	1		Dest	DINT	2
integer								
tag/value								
any floating	Rounds	Source	REAL	3.0	Rounds	Source	REAL	3.0
point		Dest	DINT	2		Dest	DINT	2
tag/value								

If the Source is negative, the instruction takes the absolute value of the Source before calculating the square root.

For the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers, if the Source is an integer data type and the Dest is an integer data type, the instruction truncates the result. For example, if the integer Source value is 3, the result is 1.732, and the Dest value becomes 1.

If the Source is a real data type and the Dest is an integer type, the instruction rounds the result. For example, if the real Source value is 3.0, the result is 1.732, and the Dest value becomes 2.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Dest = square root of Source.
Postscan	N/A

Function Block Diagram

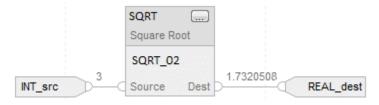
FBD Block

Condition/State	Action Taken
Prescan	N/A
Enableln is false	Set EnableOut to EnableIn.
Enableln is true	Dest. = square root of Source.
	If overflow occurs
	Clear EnableOut to false
	else
	Set EnableOut to true
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = square root of Source
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


Examples

Ladder Diagram

Function Block Diagram

FBD Block

FBD Function

Structured Text

REAL_dest := SQRT(INT_src);

Subtract (SUB)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

When enabled, the SUB instruction and the operator '-' subtracts Source B from Source A.

Available Languages

Ladder Diagram

SUB	
Subtract	
Source A	?
	??
Source B	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	SUB		
	Subtract		
0.0	SUB_01		0.0
0.0	SourceA	Dest	> " "
0.0	SourceB		

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use the operator '-' in an expression to compute the same result. Refer to <u>Structured Text Syntax on</u> page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate	Value from which to
	INT	INT	tag	subtract Source B.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		LTIME*		
		TIME*		
		TIME32*		
		LDT*		
		DT*		
Source B	SINT	SINT	immediate	Value to subtract from
	INT	INT	tag	Source A.
	DINT	DINT	-	
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		LTIME*		
		TIME*		
		TIME32*		
		LDT*		
		DT*		
Dest	SINT	SINT	tag	Tag to store result of
	INT	INT		the instruction.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
		REAL LREAL LTIME* TIME* TIME32* LDT* DT*		

Tip:

*Keep these considerations in mind when using relative time (LTIME, TIME32, TIME) and absolute time (LDT, DT) data types in SUB instructions:

- If both Source A and Source B are relative time, the Dest must be relative time.
- If Source A is relative time and Source B is absolute time or vice versa, the Dest must be absolute time.
- In ADD instructions, Source A and Source B cannot both be absolute time.

See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
SUB	FBD_MATH	tag	SUB structure

FBD_MATH Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.
		Default is true.
SourceA	REAL	Value from which to subtract SourceB.
SourceB	REAL	Value to subtract from SourceA.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Description
SourceA (top)	SINT	Value from which to subtract SourceB.
	USINT	
	UINT DINT	
	UDINT LINT	
	ULINT REAL	
	LREAL	
SourceB (bottom)	SINT USINT	Value to subtract from SourceA.
	INT	
	DINT	
	UDINT LINT	
	ULINT REAL	
	LREAL	

Output Operand (Right Pin)	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Description
Dest	DINT UDINT	Result of the function.

Output Operand (Right Pin)	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Description
	LINT	
	ULINT	
	REAL	
	LREAL	

See FBD Functions on page 862.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Conditional
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Yes

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in
	Dest = Source A - Source B
Postscan	N/A

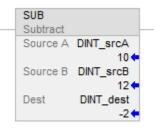
Function Block Diagram

FBD Block

Condition/State	Action Taken
Prescan	N/A
Enableln is false	Set EnableOut to EnableIn
EnableIn is true	Dest = SourceA - SourceB
	If overflow occurs
	Clear EnableOut to false

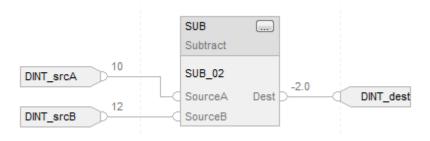
Condition/State	Action Taken
	else
	Set EnableOut to true
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

FBD Function



Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = SourceA - SourceB
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


Examples

Ladder Diagram

Function Block Diagram

FBD Block

FBD Function

 $-_{f}$

Structured Text

DINT_dest := DINT_srcA - DINT_srcB;

FBD Functions

This information applies to the Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

FBD Functions are implemented in accordance with IEC 61131-3 Edition 3. Arithmetic and Numeric functions are provided in the Function Block Diagram language. Ladder Diagram and Structured Text languages include Arithmetic and Numeric as operators and functions.

FBD Functions have one or more inputs and one output. FBD Functions are implemented for efficiency, have smaller footprints and use less system resources to operate than FBD Function Blocks.

FBD Functions

- Require all inputs and outputs. All inputs must be of a supported data type.
- Do not have backing tags or predefined data types. Connected input values do not convert to predefined data types.
- Do not have EnableIn bits and are always executed.

Example: Add Function

Function Overloading

This information applies to the Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

Function overloading defines two or more functions with the same name but different signature, such as argument or return type. FBD Functions that support overloading take a range of input data types. The output data types depend on the input data types.

FBD Functions follow these rules:

- Input type promotion
 - Input type promotion
 - Data types rankings from highest to lowest priority:
 - LREAL, REAL, ULINT, LINT, UDINT, DINT, UINT, INT, USINT, SINT
 - All inputs promote to the data type of the input with the highest rank before execution
 - If all inputs have a rnak value of DINT or lower, all inputs promote to DINT type before execution
 - Output type depends on the input type

The function's output type is the promoted input type

For example, Add function,

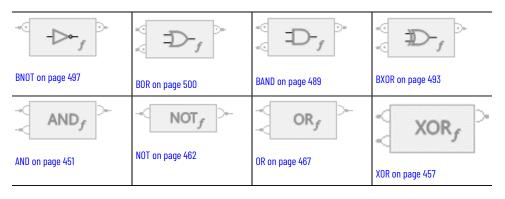
- SINT + UINT inputs promote to DINT + DINT inputs. Outputs are DINT
- USINT + LINT inputs promote to LInt + LINT inputs. Outputs are LINT
- UNIT + LREAL inputs promote to LREAL + LREAL inputs. Outputs are LREAL

Move/Logical Instructions

The Move instructions modify and move bits.

Available Instructions

Ladder Diagram


MOVE on	MVM on	AND on page	OR on page	XOR on page	NOT on page	SWPB on	CLR on page	BTD on page
page 482	page 476	451	467	457	462	page 486	473	444

Function Block Diagram

FBD Block

MVMT on page	AND on page	OR on page	XOR on page	NOT on page	BTDT on page	BAND on page	BXOR on page
478	451	467	457	462	447	489	493
BOR on page	BNOT on page						
500	497						

FBD Function

Structured Text

MVMT on page 478	SWPB on page 486	BTDT on page 447

If you want to:	Use this instruction:
Copy a value or move strings	MOVE
Copy a specific part of an integer	MVM
Copy a specific part of an integer in a function block	MVMT
Move bits within an integer or between integers	BTD
Move bits within an integer or between integers in a function	BTDT
block	
Clear a value	CLR
Rearrange the bytes of an INT, DINT, or REAL tag	SWPB

The logical instructions perform logical operations on bits.

If you want to:	Use this instruction:
Perform a bitwise AND operation	AND
Perform a bitwise OR operation	OR
Perform a bitwise, exclusive OR operation	XOR
Perform a bitwise NOT operation	NOT

You can mix data types, but loss of accuracy and rounding error might occur and the instruction takes more time to execute. Check the S:V bit to see whether the result was truncated.

The **bold** data types indicate optimal data types. An instruction executes faster and requires less memory if all the operands of the instruction use the same optimal data type, typically DINT or REAL.

A move/logic instruction executes once each time the instruction is scanned as long as the rung-condition-in is true. If you want the expression evaluated only once, use any one-shot instruction to trigger the move/logic instruction.

Bit Field Distribute (BTD)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The BTD instruction copies the specified bits from the Source, shifts the bits to the appropriate position, and writes the bits into the Destination.

Available Languages

Ladder Diagram

	BTD		
_	Bit Field Distrib	ute	_
	Source	?	
		??	
	Source Bit	?	
	Dest	?	
		??	
	Dest Bit	?	
	Length	?	

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Operand	Туре	Format	Description
Source	SINT	immediate	Tag that contains the bits to
	INT	tag	move
	DINT		
Source bit	DINT	immediate (0-31) Number of the bit (low number) from where to the move Must be within the vali for the Source data typ	
Destination	SINT INT DINT	tag	Tag where to move the bits
Destination bit	DINT	immediate (0-31)	The number of the bit to which the data should be moved must be within the valid range for the Destination data type.
Length	DINT	immediate (1-32)	Number of bits to move

Ladder Diagram

Description

When enabled, the BTD instruction copies a group of bits from the Source to the Destination. The group of bits is identified by the Source bit (lowest bit number of the Source) and the Length (number of bits to copy). The Destination bit identifies the lowest bit number to start with in the Destination. The Source remains unchanged.

If the length of the bit field extends beyond the Destination, the instruction does not save the extra bits. Any extra bits do not wrap to the next word.

A SINT or INT tag is converted to a DINT value by zero-fill.

Affects Math Status Flags

No

Major/Minor Faults

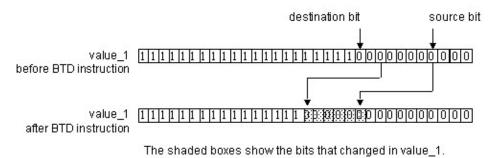
None specific to this instruction. See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

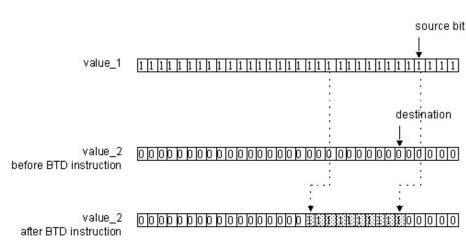
Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false.	N/A

Condition/State	Action Taken
Rung-condition-in is true.	The instruction copies and shifts the Source bits to the
	Destination.
Postscan	N/A


Examples

Example 1

Ladder Diagram


BTD	
 Bit Field Distribute	⊢
Source value_1	
2#1111_1111_1111_1111_1000_0000_0000 <	
Source Bit 3	
Dest value_1	
2#1111_1111_1111_1111_1000_0000_0000 <	
Dest Bit 10	
Length 6	

When enabled, the BTD instruction moves bits within value_1.

Example 2

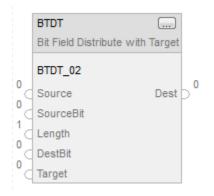
BTD	
Bit Field Distribute	⊢
Source value_1	
2#1111_1111_1111_1111_1111_1111_1111_	
Source Bit 3	
Dest value_2	
2#0000_0000_0000_0000_0000_0000_0000	
Dest Bit 5	
Length 10	
	Bit Field Distribute Source value_1 2#1111_1111_1111_1111_1111_1111 3 Source Bit 3 Dest value_2 2#0000_0000_0000_0000_0000_0000 \$ Dest Bit 5

When enabled, the BTD instruction moves 10 bits from value_1 to value_2.

The shaded boxes show the bits that changed in value_2.

Bit Field Distribute with Target (BTDT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.


The BTDT instruction first copies the Target to the Destination. Then the instruction copies the specified bits from the Source, shifts the bits to the appropriate position, and writes the bits into the Destination. The Target and Source remain unchanged.

Available Languages

Ladder Diagram

This instruction is not available in a ladder diagram.

Function Block

Structured Text

BTDT(BTDT_tag);

Operands

Function Block

Operand	Туре	Format	Description
BTDT tag	FBD_BIT_FIELD_DISTRIBUTE	structure	BTDT structure

Structured Text

Input Parameter	Data Type	Description
EnableIn	BOOL	If cleared, the instruction does not
		execute and outputs are not updated. If
		set, the instruction executes.
		Default is set.
Source	DINT	Input value containing the bits to move to
		Destination.
		Valid = any integer
SourceBit	DINT	The bit position in Source (lowest bit
		number from where to start the move).
		Valid = 0-31
Length	DINT	Number of bits to move.
		Valid = 1-32
DestBit	DINT	The bit position in Dest (lowest bit
		number to start copying bits into).
		Valid = 0-31
Target	DINT	Input value to move to Dest prior to
		moving bits from the Source.
		Valid = any integer

Output Parameter	Data Type	Description	
EnableOut	BOOL	Indicates if instruction is enabled.	
Dest	DINT	Result of the bit move operation.	

See Structured Text Syntax for information on the syntax of expressions within structured text.

Description

When true, the BTDT instruction first copies the Target to the Destination, and copies a group of bits from the Source to the Destination. The group of bits is identified by the Source bit (lowest bit number of the group) and the Length (number of bits to copy). The Destination bit identifies the lowest bit number bit to start with in the Destination. The Source and Target remains unchanged.

If the length of the bit field extends beyond the Destination, the instruction does not save the extra bits. Any extra bits do not wrap to the next word.

Affects Math Status Flags

Controllers	Affected Math Status Flag
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Yes
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	No
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Common Attributes on page 849 for operand-related faults.

Execution

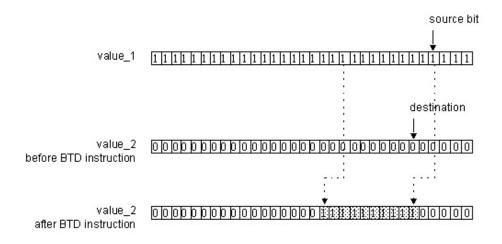
Function Block

Condition/State	Action Taken	
Prescan	EnableIn and EnableOut bits are cleared to false.	
Tag.EnableIn is false EnableIn and EnableOut bits are cleared to false.		
Tag.EnableIn is true	EnableIn and EnableOut bits are set to true.	
	The instruction executes.	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	EnableIn and EnableOut bits are cleared to false.	

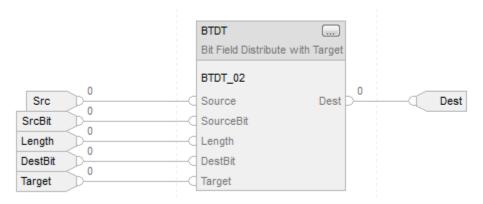
Structured Text

Condition/State	Action Taken	
Prescan	See Prescan in the Function Block table.	
Normal Execution	See Tag.EnableIn is true in the Function Block table.	
Postscan	See Postscan in the Function Block table.	

Example


Step 1

The controller copies Target into Dest.


Step 2

The SourceBit and the Length specify which bits in Source to copy into Dest. Starting at DestBit, Source and Target remain unchanged.

The shaded boxes show the bits that changed in value_2.

Function Block

Structured Text

BTDT_01.Source := sourceSTX;

BTDT_01.SourceBit := source_bitSTX;

BTDT_01.Length := LengthSTX; BTDT_01.DestBit := dest_bitSTX; BTDT_01.Target := TargetSTX; BTDT(BTDT_01); distributed_value := BTDT_01.Dest;

Bitwise And (AND)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

The AND instruction performs a bitwise AND operation using the bits in Source A and Source B and places the result in Dest.

Available Languages


Ladder Diagram

AND	
Bitwise AND	
Source A	?
	??
Source B	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

Function Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use the operator AND (or &) in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate	Value to AND with
	INT	INT	tag	Source B. //Float
	DINT	DINT		includes REAL and
	REAL	LINT		LREAL data types.
		USINT		Tip: Float inputs are
		UINT		converted to integer
		UDINT		which may cause an
		ULINT		overflow.
		REAL		
		LREAL		
Source B	SINT	SINT	immediate	Value to AND with
	INT	INT	tag	Source A.
	DINT	DINT		Tip: Float inputs are
	REAL	LINT		converted to integer

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
		USINT UINT UDINT ULINT REAL		which may cause an overflow.
Dest	SINT INT DINT REAL	LREAL SINT INT DINT LINT USINT	tag	Tag to store result of the instruction. Tip: If the destination type is Float, the resultant value will be
		UINT UDINT ULINT REAL LREAL		converted to Float.

Tip: When integer promotion is required for the inputs, the smaller type is converted to the larger type using zero extension.

Function Block

Operand	Data Type	Format	Description
AND	FBD_LOGICAL	tag	AND structure

FBD_LOGICAL Structure

Input Members	Data Type	Description	
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.	
		Default is true.	
SourceA	DINT	Value to AND with SourceB.	
SourceB	DINT	Value to AND with SourceA.	

Output Members	Data Type	Description	
EnableOut	BOOL Indicates if the instruction executed		
		without fail when it was enabled.	
Dest	DINT	Result of the instruction.	

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
SourceA (top)	SINT	Value to AND with Source B.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	
SourceB (bottom)	SINT	Value to AND with Source A.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Description	
Dest	DINT	Result of the function.	

Output Operand (Right Pin)	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Description
	LINT ULINT	

See FBD Functions on page 862.

Description

When enabled, the instruction evaluates the bitwise AND operation: Dest = A AND B

If the bit in	And the bit in	The bit in the	
Source A is:	Source B is:	Dest is:	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

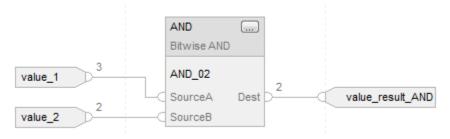
Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in
	Dest is set as described in the Description section.
Postscan	N/A

Function Block

Condition/State	Action Taken	
Prescan	N/A	
EnableIn is false	Set EnableOut to EnableIn	
EnableIn is true	Set EnableOut to EnableIn	
	Dest is set as described in the Description section.	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	N/A	

FBD Function


Condition/State	Action Taken	
Prescan	N/A	
Normal Scan	Dest = SourceA AND SourceB	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	N/A	

Examples

Ladder Diagram

	AND	
-	Bitwise AND	\vdash
	Source A value_1	
	2#0000_0000_0000_0101_0101_0101_1111_111	
	Source B value_2	
	2#0000_0000_0000_1111_1111_0000_0000_000	
	Dest value_result_AND	
	2#0000_0000_0000_0101_0101_0000_0000	

Function Block

FBD Function

Structured Text

value_result_and := value_1 AND value_2;

Bitwise Exclusive Or (XOR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

The XOR instruction performs a bitwise XOR operation using the bits in Source A and Source B and places the result in Dest.

Available Languages

Ladder Diagram

Function Block Diagram

Function Block Diagram supports these elements:

Function Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use XOR as an operator in an expression to compute the same result. Refer to <u>Structured Text Syntax</u> on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate	Value to XOR with
	INT	INT	tag	Source B. //Float
	DINT	DINT		includes REAL and
	REAL	LINT		LREAL data types.
		USINT		Tip: Float inputs are
		UINT		converted to integer
		UDINT		which may cause an
		ULINT		overflow.
		REAL		
		LREAL		
Source B	SINT	SINT	immediate	Value to XOR with
	INT	INT	tag	Source A.
	DINT	DINT		Tip: Float inputs are
	REAL	LINT		converted to integer

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
		USINT UINT ULINT REAL LREAL		which may cause an overflow.
Dest	SINT INT DINT REAL	SINT INT DINT LINT USINT UDINT ULINT REAL LREAL	tag	Tag to store result of the instruction. Tip: If the destination type is Float, the resultant value will be converted to Float.

Tip: When integer promotion is required for the inputs, the smaller type is converted to the larger type using zero extension.

Function Block

Operand	Data Type	Format	Description
XOR	FBD_LOGICAL	tag	XOR structure

FBD_LOGICAL Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.
		Default is true.
SourceA	DINT	Value to XOR with SourceB.
SourceB	DINT	Value to XOR with SourceA.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	DINT	Result of the instruction.

FBD Function

Input Operands (Left Pins)	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Description
SourceA (top)	SINT	Value to OR with Source B.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	
SourceB (bottom)	SINT	Value to OR with Source A.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Description
Dest	DINT UDINT LINT	Result of the function.
	ULINT	

Description

When enabled, the instruction evaluates the bitwise XOR operation:

Dest = Source A XOR Source B

If the bit in	And the bit in	The bit in
Source A is:	Source B is:	Dest is:
0	0	0
0	1	1
1	0	1
1	1	0

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in
	Dest is set as described in the Description section.
Postscan	N/A

Function Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn
Enableln is true	Set EnableOut to EnableIn Dest is set as described in the Description section.
Instruction first run	N/A
Instruction first scan	N/A

Condition/State	Action Taken
Postscan	N/A

Examples

Ladder Diagram

XOR	
Bitwise Exclusive	e OR
Source A	value_1
2#0000_0000_	0000_0101_0101_0101_1111_1111
Source B	value_2
2#0000_0000_	0000_1111_1111_0000_0000_0000
Dest	value_result_XOR
2#0000_0000	0000_1010_1010_0101_1111_1111

Function Block

FBD Function

Structured Text

value_result_XOR := value_1 XOR value_2;

Bitwise Not (NOT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

The NOT instruction performs a bitwise inversion of the Source and places the result in Dest.

Available Languages

Ladder Diagram

	NOT	
-	Bitwise NOT	-
	Source	?
		??
	Dest	?
		??

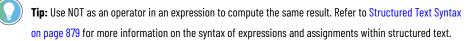
Function Block Diagram

Function Block Diagram supports these elements:

Function Block

	NOT		
	Bitwise N	ЮТ	
	NOT_01		
° <	Source	Dest	Þ

FBD Function



Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions.

Ladder Diagram

Operand	CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers Data Type	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Format	Description
Source	SINT	SINT	immediate	Value to NOT
	INT	INT	tag	//FLOAT includes REAL
	DINT	DINT		and LREAL data types.
	REAL	LINT		Tip: Floating point
		USINT		inputs are converted
		UINT		to integer which may
		UDINT		cause an overflow.
		ULINT		
		REAL		
		LREAL		
Dest	SINT	SINT	tag	Tag to store result of
	INT	INT		the instruction.
	DINT	DINT		Tip: If the destination
	REAL	LINT		type is FLOAT, the
		USINT		resultant value will be
		UINT		converted to floating
		UDINT		point.
		ULINT		
		REAL		
		LREAL		

Tip: When integer promotion is required for the inputs, the smaller type is converted to the larger type using zero extension.

Function Block

Operand	Data Type	Format	Description
NOT	FBD_CONVERT	tag	NOT structure

FBD_CONVERT Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.
		Default is true.
Source	DINT	Value to NOT.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	DINT	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

	Data Type CompactLogix 5380, CompactLogix	
Input Operands (Left Pins)	5480, ControlLogix 5580, Compact	Description
	GuardLogix 5380, and GuardLogix 5580	-
	controllers	
Source (top)	SINT	Value to NOT.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Dest	DINT UDINT	Result of the function.
	LINT ULINT	

See FBD Functions on page 862.

Description

When enabled, the instruction evaluates the bitwise NOT operation:

Dest = NOT Source

If the bit in the Source is:	The bit in the Dest is:
0	1
1	0

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in Dest is set as described in the Description section.
Postscan	N/A

Function Block

Condition/State	Action Taken
Prescan	N/A
Enableln is false	Set EnableOut to EnableIn
EnableIn is true	Set EnableOut to EnableIn
	Dest is set as described in the Description section.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = NOT Source
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

Examples

Ladder Diagram

NOT	
 Bitwise NOT	⊢
Source value_1	
2#0000_0000_0000_0101_0101_0101_1111_111	
Dest value_result_NOT	
2#1111_1111_1111_1010_1010_1010_0000_000	

Function Block

FBD Function

Structured Text

value_result_NOT := NOT value_1;

Bitwise Inclusive Or (OR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

The OR instruction performs a bitwise OR operation using the bits in Source A and Source B and places the result in Dest.

Available Languages

Ladder Diagram

	OR		
_	Bitwise Inclusive OR		_
	Source A	?	
		??	
	Source B	?	
		??	
	Dest	?	
		??	

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	OR		
	Bitwise Inclu	isive OR	
	OR_01		
<u>ر</u>	SourceA	Dest	Þ
° q	SourceB		

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use OR as an operator in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversion on page 851s.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT	SINT	immediate	Value to OR with Source
	INT	INT	tag	B. //Float includes REA
	DINT	DINT		and LREAL data types.
	REAL	LINT		Tip: Float inputs are
		USINT		converted to integer
		UINT		which may cause an
		UDINT		overflow.
		ULINT		
		REAL		
		LREAL		
Source B	SINT	SINT	immediate	Value to OR with Sourc
	INT	INT	tag	Α.
	DINT	DINT		Tip: Float inputs are
	REAL	LINT		converted to integer
		USINT		which may cause an
		UINT		overflow.
		UDINT		
		ULINT		
		REAL		
		LREAL		
Dest	SINT	SINT	tag	Tag to store result of
	INT	INT		the instruction.
	DINT	DINT		Tip: If the destination
	REAL	LINT		type is Float, the
		USINT		resultant value will be
		UINT		converted to Float.
		UDINT		
		ULINT		
		REAL		
		LREAL		

Tip: When integer promotion is required for the inputs, the smaller type is converted to the larger type using zero extension.

Function Block

Operand	Туре	Format	Description
OR	FBD_LOGICAL	tag	OR structure

FBD_LOGICAL Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.
		Default is true.
SourceA	DINT	Value to OR with SourceB.
SourceB	DINT	Value to OR with SourceA.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		successfully when it was enabled.
Dest	DINT	Result of the instruction.

FBD Function

Input Operands (Left Pins)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
SourceA (top)	SINT	Value to OR with Source B.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Input Operands (Left Pins)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
SourceB (bottom)	SINT	Value to OR with Source A.
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Dest	DINT UDINT LINT ULINT	Result of the function.

See FBD Functions.

Description

When enabled, the instruction evaluates the bitwise OR operation:

Dest = Source A OR Source B

If the bit in	And the bit in	The bit in
Source A is:	Source B is:	Dest is:
0	0	0
0	1	1
1	0	1
1	1	1

Affects Math Status Flags

Controllers	Affects Math Status Flag
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Conditional
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Yes

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in Dest is set as described in the Description section.
Postscan	N/A

Function Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn
Enableln is true	Set EnableOut to EnableIn
	Dest is set as described in the Description section.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

FBD Function

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = SourceA OR SourceB
Instruction first run	N/A

Condition/State	Action Taken
Instruction first scan	N/A
Postscan	N/A

Examples

Ladder Diagram

OR	
Bitwise Inclusiv	/e OR
Source A	value_1
2#0000_000	0_0000_0101_0101_0101_1111_1111
Source B	value 2
2#0000_000	0_0000_1111_1111_0000_0000_0000
Dest	value_result_or
2#0000_000	0_0000_1111_1111_0101_11111_1114

Function Block

FBD Function

Structured Text

value_result_or := value_1 OR value_2;

Clear (CLR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The CLR instruction clears all the bits of the Dest.

Available Languages

Ladder Diagram

	CLR	
_	Clear	
	Dest	?
		??

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

The CLR instruction supports elementary data types. See Elementary Data Types.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Dest	SINT	SINT	tag	Tag to clear.
	INT	INT		
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		LTIME		
		TIME		
		TIME32		
		LDT		

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
		DT		

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Clear Dest to 0.
Postscan	N/A

Example

Ladder Diagram

CLR	
Clear	-
Dest	value
	0 🔶

Masked Move (MVM)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5370, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

The MVM instruction copies the Source to a Destination and allows portions of the data to be masked.

The MVM instruction uses a Mask to pass or block Source data bits. A "1" in the mask means the data bit is passed; a "0" in the mask means the data bit is blocked.

If integer data types are mixed, the instruction fills the upper bits of the smaller integer data types with 0s so that they are the same size as the largest data type.

Entering an immediate mask value

When mask is entered, the programming software defaults to decimal values. To enter a mask using another format, precede the value with the correct prefix.

Prefix	Description	
16#	Hexadecimal (e.g., 16#0F0F)	
8#	Octal (e.g., 8#16)	
2#	Binary (e.g., 2#00110011)	

Available Languages

Ladder Diagram

MVM	
Masked Move	
Source	?
	??
Mask	?
	??
Dest	?
	??

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixed data types within an instruction. See Data Conversions.

Ladder Diagram

Operand	Data Type	Format	Description
Source	SINT	immediate	Value to move
	INT	tag	
	DINT		
Mask	SINT	immediate	Which bits to block or pass
	INT	tag	
	DINT		
Dest	SINT	tag	Tag to store the result
	INT		
	DINT		

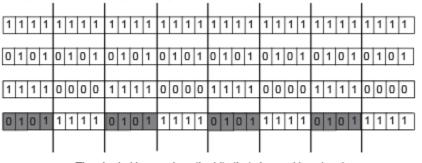
Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	No
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

Controllers	A minor fault will occur if:	Fault Type	Fault Code
CompactLogix 5380,	The feature is enabled and	4	4
CompactLogix 5480,	overflow is detected		
ControlLogix 5580, Compact			
GuardLogix 5380, and			
GuardLogix 5580 controllers			
CompactLogix 5370,	N/A	N/A	N/A
ControlLogix 5570, Compact			
GuardLogix 5370, and			
GuardLogix 5570 controllers			

See Index Through Arrays on page 863 for array-indexing faults.


Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction passes the Source through the Mask and copies the result into the Destination. Unmasked bits in the Destination remain unchanged.
Postscan	N/A

Example

Ladder Diagram

The shaded boxes show the bits that changed in value_b

Row 1: value_b before MVM

Row 2: value_a

Row 3: mask_2

Row 4: value_b after MVM

MVM	
Masked Move	
Source	value_a
2#0101_0101_0101_0	0101_0101_0101_0101_0101 <
Mask	mask_2
2#1111_0000_11111_0	000_1111_0000_1111_0000
Dest	value_b
2#1111_1111_1111_1	111_1111_1111_1111_1111_1111

Copy data from value_a to value_b, while allowing data to be masked (a 0 masks the data in value_a).

Masked Move with Target (MVMT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

The MVMT instruction copies the Source to a Destination and allows portions of the data to be masked.

Available Languages

Ladder Diagram

This instruction is not available in Ladder Diagram.

Function Block

Structured Text

MVMT(MVMT_tag);

Operands

Structured Text

Variable	Туре	Format	Description
MVMT tag	FBD_MASKED_MOVE	Structure	MVMT structure

See Structured Text Syntax on page 879 for information on the syntax of expressions within structured text.

Function Block

Operand	Туре	Format	Description
MVMT tag	FBD_MASKED_MOVE	Structure	MVMT structure

FBD_MASKED_MOVE Structure

Input Parameter	Data Type	Description
EnableIn	BOOL	If cleared, the instruction does not execute and outputs are not updated. If set, the instruction executes. Default is set.
Source	DINT	Input value to move to Destination based on value of Mask. Valid = any integer
Mask	DINT	Mask of bits to move from Source to Dest. All bits set to one cause the corresponding bits to move from Source

Input Parameter	Data Type	Description
		to Dest. All bits that are set to zero cause the corresponding bits not to move from Source to Dest.
		Valid = any integer
Target	DINT	Input value to move to Dest prior to moving Source bits through the Mask. Valid = any integer

Output Parameter	Data Type	Description
EnableOut	BOOL	Indicates if instruction is enabled.
Dest	DINT	Result of the masked move operation.

Description

When enabled, the MVMT instruction uses a Mask to pass or block Source data bits. A "1" in the mask means the data bit is passed. A "0" in the mask means the data bit is blocked.

If you mix integer data types, the instruction fills the upper bits of the smaller integer data types with 0s so that they are the same size as the largest data type.

Entering an immediate mask value using an Input Reference

When you enter a mask, the programming software defaults to decimal values. If you want to enter a mask using another format, precede the value with the correct prefix.

Prefix	Description
16#	hexadecimal (e.g., 16#0F0F)
8#	octal (e.g., 8#16)
2#	binary (e.g., 2#00110011)

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	No
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes for the output
5370, and GuardLogix 5570 controllers	

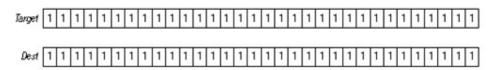
Major/Minor Faults

None specific to this instruction. See Common Attributes for operand-related faults.

Execution

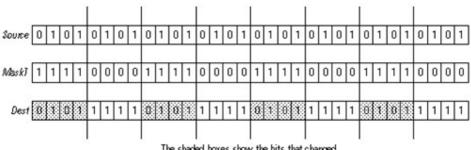
Function Block

Condition/State	Action Taken
Prescan	EnableIn and EnableOut bits are cleared to false.
Tag.EnableIn is false	EnableIn and EnableOut bits are cleared to false.
Tag.EnableIn is true	EnableIn and EnableOut bits are set to true.
	The instruction executes.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	EnableIn and EnableOut bits are cleared to false.

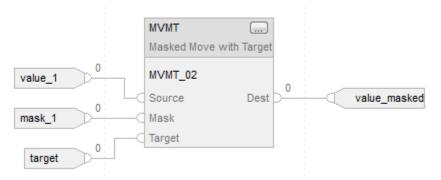

Structured Text

Condition/State	Action Taken
Prescan	See Prescan in the Function Block table.
Normal execution	See Tag.EnableIn is true in the Function Block table.
Postscan	See Postscan in the Function Block table.

Examples


Step 1

The controller copies Target into Dest.


Step 2

The instruction masks Source and compares it to Dest. Any required changes are made in Dest, which becomes and input parameter to value_masked. Source and Target remain unchanged. A 0 in the mask restrains the instruction from comparing that bit.

The shaded boxes show the bits that changed.

Function Block

Structured Text

MVMT_01.Source := value_1;

MVMT_01.Mask := mask_1;

MVMT_01.Target := target;

MVMT(MVMT_01);

value_masked := MVMT_01.Dest;

Move (MOVE)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The MOVE instruction moves a copy of the Source to the Dest. The Source remains unchanged.

Available Languages

Ladder Diagram

MOVE	
Move	
Source	?
	??
Dest	?
	??

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Tip: Use an assignment ":=" with an expression to achieve the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions on page 851.

Ladder Diagram

Numeric

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source	SINT	SINT	immediate	Value to move
	INT	INT	tag	
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		TIME		
		TIME32		
		LTIME		

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
		DT LDT		
Dest	SINT INT DINT REAL	SINT INT DINT LINT USINT UUINT ULINT REAL LREAL TIME TIME32 LTIME DT LDT	tag	Tag to store the result

Tip: See Time and date data types on page 858 for a complete description of Relative Time (LTIME, TIME, and TIME32) and Absolute Time (LDT and DT) data types.

Tip: Keep these restrictions in mind when using Relative Time (LTIME, TIME, TIME32) and Absolute Time (LDT, DT) data types:

- A relative time type can move only to or from another relative time type.
- And absolute time type can move only to or from another absolute time type. Additionally, you can
 program an absolute time type with a LINT to accommodate some legacy timestamp practices.

String (for CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only)

Operand	Data Type	Format	Description
Source	String type	immediate	String to move
		tag	
Dest	String type	tag	Tag to store the result

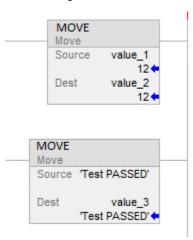
Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math Status Flags on page 849.

Major/Minor Faults

A minor fault will occur if:	Fault type	Fault code
Overflow detection feature is enabled and	4	4
the Source value is outside the range of		
Dest type.		


Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.	
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.	
	The instruction copies the Source into the Dest.	
	String operands:	
	If Source.LEN > SIZE(Dest.DATA)	
	The string is truncated to what will fit	
	S:V is set.	
Postscan	N/A	

Examples

Ladder Diagram

Structured Text

value_2 := value_1;

value_3 := 'Test PASSED';

Swap Byte (SWPB)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The SWPB instruction rearranges the order of the bytes of the Source. It places the result in the Destination.

Available Languages

Ladder Diagram

SWPB	
Swap Byte	
Source	?
	??
Order Mode	?
Dest	?
	??

Function Block

This instruction is not available in function block.

Structured Text

SWPB(Source, Order Mode, Dest);

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversion.

Ladder Diagram and Structured Text

Operand	Data Type	Format	Description
Source	INT DINT	tag	Tag that contains the bytes to rearrange.
Order Mode		list item	This operand specifies how to reorder. Refer Order Mode table.
Dest	INT DINT	tag	Tag to store the bytes in a new order. Refer Dest table.

If selecting the HIGH/LOW order mode, enter it as HIGHLOW (without the slash). See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Order Mode

	And you want to change the bytes to		
If the Source is an	this pattern(each letter represents a	Then select	
	different byte)		
INT	AB => BA	Any option	
DINT	ABCD => DCBA	REVERSE	
	ABCD =>CDAB	WORD	
	ABCD => BADC	HIGH/LOW	

Dest

If the Source is an	Then the Destination must be an	
INT	INT, DINT	
	If the destination is a DINT, the result is sign extended after	
	bytes swap.	
DINT	DINT	

Affects Math Status Flags

No

Major/Minor Faults

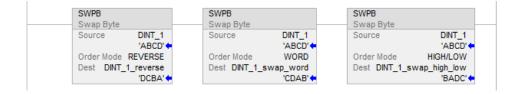
None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction rearranges the specified bytes.
Postscan	N/A

Structured Text


Condition/State	Action Taken	
Prescan	See Prescan in the Ladder Diagram table.	
Normal Execution	See Rung-condition-in is true in the Ladder Diagram table.	
Postscan	See Postscan in the Ladder Diagram table.	

Examples

Example 1 - Swap the bytes of a DINT tag

The three SWPB instructions reorder the bytes of DINT_1 according to a different order mode. The display style is ASCII, and each character represents one byte. Every instruction places the bytes, in the new order, in a different Destination.

Ladder Diagram

Example 2 - Swap the bytes in all elements of an array

Ladder Diagram CLR SIZE Clear Size in Elements Dest index Source array[0] 0 🕈 '1234' 📢 Dim. To Vary 0 Size array_length 4 SWPB ADD swap_bytes -[LBL] Swap Byte Add Source array[index] Source A 1 '1234' Order Mode REVERSE Source B index Dest array_bytes_reverse[index] 0 🕈 '4321' Dest index 0 🗲 LES swap_bytes Less Than (A<B) (JMP Source A index 0 🔶 Source B array_length 4

Example 3: SWPB on Structured Text

Structured Text

index := 0;

SIZE (array[0],0,array_length);

REPEAT

SWPB(array[index],REVERSE,array_bytes_reverse[index]);

index := index + 1;

UNTIL(index >= array_length)END_REPEAT;

Boolean AND (BAND)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The BAND instruction logically ANDs up to eight Boolean inputs. To perform a bitwise AND, refer to Bitwise And (AND).

Available Languages

Ladder Diagram

This instruction is not available in ladder diagram.

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	BAN	D)		
	Boole	ean	And		
	BAN	D_(01		
10	ln1		Out	þ	C
¦⊙	In2				
'₀	In3				
'e	In4				

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Operands

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
BAND tag	FBD_BOOLEAN_AND	structure	BAND structure

FBD_BOOLEAN_AND Structure

Input Members	Data Type	Description	
EnableIn	BOOL	Enable input. If cleared, the instruction	
		does not execute and outputs are not	
		updated.	
		Default is set.	
ln1	BOOL	First Boolean input.	
		Set to 1 on first download.	
In2	BOOL	Second Boolean input.	
		Set to 1 on first download.	

Input Members	Data Type	Description	
ln3	BOOL	Third Boolean input.	
		Set to 1 on first download.	
In4	BOOL	Forth Boolean input.	
		Set to 1 on first download.	
In5	BOOL	Fifth Boolean input.	
		Set to 1 on first download.	
In6	BOOL	Sixth Boolean input.	
		Set to 1 on first download.	
In7	BOOL	Seventh Boolean input.	
		Set to 1 on first download.	
In8	BOOL	Eighth Boolean input.	
		Set to 1 on first download.	

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if instruction is enabled.
Out	BOOL	The output of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	Data Type	Description
ln1	BOOL	First Boolean input
ln2	BOOL	Second Boolean input
	Data Type	
Output Operand (Right Pin)	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact	Description
	GuardLogix 5380, and GuardLogix 5580	
	controllers	
Out	BOOL	The output of the instruction.

See FBD Functions.

Operation

FBD Block

The BAND instruction ANDs up to eight Boolean inputs. If an input is not used, it defaults to set (1).

Out = In1 AND In2 AND In3 AND In4 AND In5 AND In6 AND In7 AND In8

IMPORTANT: When removing an input wire from the BAND instruction during an edit, make sure the input is set (1).

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

The FBD Function ANDs two Boolean inputs.

Out = In1 AND In2

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction.

Execution

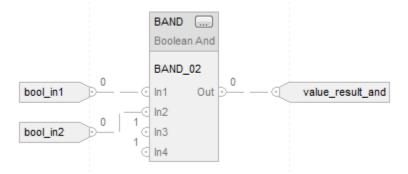
Function Block Diagram

FBD Block

Condition/State	Action Taken	
Prescan	EnableIn and EnableOut bits are cleared to false.	
Tag.EnableIn is false	EnableIn and EnableOut bits are cleared to false.	
Tag.EnableIn is true	EnableIn and EnableOut bits are set to true.	
	The instruction executes as described in the Operation section.	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	EnableIn and EnableOut bits are cleared to false.	

FBD Function

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Out = In1 AND In2
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


Example

Function Block Diagram

FBD Block

In this example, bool_in1 is copied into BAND_02.In1, bool_in2 is copied into BAND_02.In2, the result of performing AND of all BAND_02 inputs is placed into BAND_02.Out, and BAND_02.Out is then copied into value_result_and.

lf bool_in1 is:	lf bool_in2 is:	Then value_result_and is:
0	0	0
0	1	0
1	0	0
1	1	1

FBD Function

This example illustrates performing an AND on bool_in1 and bool_in2 and places the result in value_result_and.

Boolean Exclusive OR (BXOR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The BXOR instruction performs an exclusive OR on two Boolean inputs.

Available Languages

Ladder Diagram

This instruction is not available in ladder diagram.

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Operands

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
BXOR tag	FBD_BOOLEAN_XOR	Structure	BXOR structure

FBD_BOOLEAN_XOR Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If cleared, the instruction
		does not execute and outputs are not
		updated.

Input Members	Data Type	Description
		Default is set.
ln1	BOOL	First Boolean input.
		Default is cleared.
In2	BOOL	Second Boolean input.
		Default is cleared.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if instruction is enabled.
Out	BOOL	The output of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
In1	BOOL	First Boolean input.
In2	BOOL	Second Boolean input.

Output Operands (Right Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Out	BOOL	The output of the instruction.

SeeFBD Functions on page 862FBD Functions.

Operation

The BXOR instruction performs an exclusive OR on two Boolean inputs.

Out = In1 XOR In2

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction.

Execution

Function Block Diagram

FBD Block

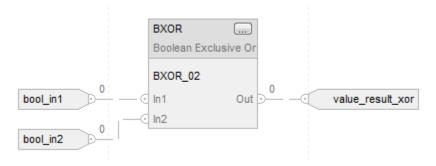
Condition/State	Action Taken
Prescan	EnableIn and EnableOut bits are cleared to false.
Tag.EnableIn is false	EnableIn and EnableOut bits are cleared to false.
Tag.EnableIn is true	EnableIn and EnableOut bits are set to true.
	The instruction executes as described in the Operation section.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	EnableIn and EnableOut bits are cleared to false.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Out = In1 XOR In2
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

Example


Function Block Diagram

In this example, bool_in1 is copied into BXOR_02.In1, bool_in2 is copied into BXOR_02.In2, the result of performing an exclusive OR on BXOR_02.In1 and BXOR_02.In2 is placed into BXOR_02.Out, and BXOR_02.Out is then copied into value_result_xor.

If bool_in1 is:	lf bool_in2 is:	Then value_result_xor is:
0	0	0
0	1	1
1	0	1
1	1	0

FBD Block

This example illustrates performing an exclusive OR on bool_in1 and bool_in2 and places the result in value_result_xor.

FBD Function

Boolean NOT (BNOT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The BNOT instruction complements a Boolean input. To perform a bitwise NOT, refer to Bitwise Not (NOT).

Available Languages

Ladder Diagram

This instruction is not available in ladder diagram.

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	BNOT		
	Boolear	n Not	
4	BNOT_	01	0
' (In	Out 3	Š

FBD Function

Structured Text

This instruction is not available in structured text.

Operands

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
BNOT tag	FBD_BOOLEAN_NOT	structure	BNOT structure

FBD_BOOLEAN_NOT Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If cleared, the instruction does not execute and outputs are not updated.
		Default is set.
In	BOOL	Input to the instruction.
		Set to 1 on first download

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if instruction is enabled.
Out	BOOL	The output of the instruction.

FBD Function

Input Operands (Left Pins)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
In	BOOL	Input to the instruction.

Output Operand (Right Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Out	BOOL	The output of the instruction.

See FBD Functions on page 862.

Operation

The BNOT instruction complements a Boolean input.

Out = NOT In

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction.

Execution

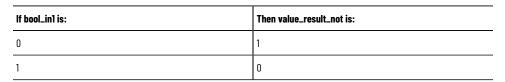
Function Block Diagram

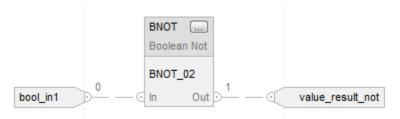
FBD Block

Condition/State	Action Taken
Prescan	EnableIn and EnableOut bits are cleared to false.
Tag.EnableIn is false	EnableIn and EnableOut bits are cleared to false.
Tag.EnableIn is true	EnableIn and EnableOut bits are set to true. The instruction executes as described in the Operation section.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	EnableIn and EnableOut bits are cleared to false.

FBD Functions

Condition/State	Action Taken
Prescan	N/A
Normal Scan	The instruction executes as described in the Operation section.


Condition/State	Action Taken
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


Example

Function Block Diagram

FBD Block

In this example, bool_in1 is copied into BNOT_02.In, the result of the complement of BNOT_02.In is placed into BNOT_02.Out and BNOT_02.Out is copied into value_result_not.

FBD Function

In this example, the result of the complement of bool_in1 is placed in value_result_not.

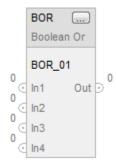
_		5	0 -1	
- 1	-	c	-	
	-		÷	

Boolean OR (BOR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. Controller differences are noted where applicable.

The BOR instruction logically ORs up to eight Boolean inputs. To perform a bitwise OR, refer to Bitwise Or (OR).

Available Languages


Ladder Diagram

This instruction is not available in ladder diagram.

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function supports only two inputs and is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Operands

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
BOR tag	FBD_BOOLEAN_OR	structure	BOR structure

FBD_BOOLEAN_OR Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If cleared, the instruction
		does not execute and outputs are not
		updated.
		Set to 0 on first download.
In1	BOOL	First Boolean input.
		Set to 0 on first download.
In2	BOOL	Second Boolean input.
		Set to 0 on first download.
In3	BOOL	Third Boolean input.

Input Members	Data Type	Description
		Set to 0 on first download.
In4	BOOL	Forth Boolean input.
		Set to 0 on first download.
In5	BOOL	Fifth Boolean input.
		Set to 0 on first download.
In6	BOOL	Sixth Boolean input.
		Set to 0 on first download.
In7	BOOL	Seventh Boolean input.
		Set to 0 on first download.
In8	BOOL	Eighth Boolean input.
		Set to 0 on first download.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if instruction is enabled.
Out	BOOL	The output of the instruction.

FBD Function

Tip: FBD Function supports only two inputs and is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
In1	BOOL	First Boolean input.
In2	BOOL	Second Boolean input.

Output Operand (Right Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Out	BOOL	The output of the instruction.

See FBD Functions on page 862.

Operation

FBD Block

The BOR instruction ORs up to eight Boolean inputs. If an input is not used, it defaults to cleared (0).

Out = In1 OR In2 OR In3 OR In4 OR In5 OR In6 OR In7 OR In8

IMPORTANT: When removing an input wire from the BOR instruction during an edit, make sure the input is cleared (0).

FBD Function

Tip: FBD Function supports only two inputs and is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

The FBD Function ORs two Boolean inputs.

Out = In1 OR In2

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction.

Execution

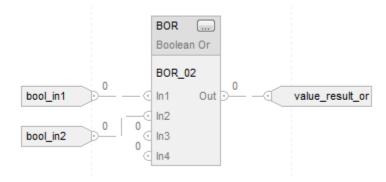
Function Block Diagram

FBD Block

Condition/State	Action Taken	
Prescan	EnableIn and EnableOut bits are cleared to false.	
Tag.EnableIn is false	EnableIn and EnableOut bits are cleared to false.	
Tag.Enableln is true	EnableIn and EnableOut bits are set to true. The instruction executes as described in the Operation section.	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	EnableIn and EnableOut bits are cleared to false.	

FBD Function

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Out = In1 OR In2
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


Example

Function Block Diagram

FBD Block

In this example, bool_in1 is copied into BOR_02.In1, bool_in2 is copied into BOR_02.In2, the result of performing OR of all BOR_02 inputs is placed into BOR_02.Out, and BOR_02.Out is then copied into value_result_or.

lf bool_in1 is:	If bool_in2 is:	Then value_result_or is:
0	0	0
0	1	1
1	0	1
1	1	1

FBD Function

Ð

Array File-Misc Instructions

The file/miscellaneous instructions operate on arrays of data.

Available Instructions

Ladder Diagram

AVE on page	COP on page	CPS on page	FAL on page	FLL on page	FSC on page	SIZE on page
529	506	506	514	533	536	557

NOTE: STD on page 553

Function Block

Not available

Structured Text

SIZE on page 557	COP on page 506	CPS on page 506

If you want to:	Use this instruction:
Perform arithmetic, logic, shift, and function operations on	FAL
values in arrays	
Search for and compare values in arrays	FSC
Copy the contents of one array into another array	СОР
Copy the value(s) in the Source to the Destination	CPS
Fill an array with specific data	FLL
Calculate the average of an array of values	AVE
Sort one dimension of array data into ascending order	SRT
Calculate the standard deviation of an array of values	STD
Find the size of a dimension of an array	SIZE

You can mix data types, but loss of accuracy and rounding error might occur and the instruction takes more time to execute. Check the S:V bit to see whether the result was truncated.

The **bold** data types indicate optimal data types. An instruction executes faster and requires less memory if all the operands of the instruction use the same optimal data type, typically DINT or REAL.

Selecting Mode of Operation

For FAL and FSC instructions, the mode tells the controller how to distribute the array operation.

If you want to:	Select this mode:

operate on all of the specified elements in an array before	All Mode
continuing on to the next instruction	
distribute array operation over a number of scans	Numerical Mode
enter the number of elements to operate on per scan	
(1-2147483647)	
manipulate one element of the array each time the	Incremental Mode
rung-condition-in goes from false to true	

Copy (COP) - Synchronous Copy (CPS)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, CompactLogix 5380, CompactLogix 5480, and ControlLogix 5580 controllers. Controller differences are noted where applicable.

The COP and CPS instructions copy the value(s) in the Source to the values in the Dest. The Source remains unchanged.

Available Languages

Ladder Diagram

COP	
Copy File	
Source	?
Dest	?
Length	?

CPS	
Synchronous	Copy File
Source	?
Dest	?
Length	?

Function Block

This instruction is not available in function block.

Structured Text

COP(Source,Dest,Length);

CPS(Source,Dest,Length);

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

Operand	CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers Data Type	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Format	Description
Source	SINT INT DINT LINT REAL String type structure	SINT INT DINT LINT USINT UINT ULINT REAL LREAL String type	tag	Initial element to copy. For controllers that support the REF_TO motion data types, the supported axis operand type can be replaced by an equivalent REF_TO type The Reference (REF) Instruction associates reference with an axis
Dest	SINT INT DINT LINT	SINT INT DINT LINT	tag	or coordinate system concrete tag. Initial element to be overwritten by the Source
	REAL String type structure	USINT UINT UDINT ULINT REAL LREAL String type structure		
Length	SINT INT DINT	SINT INT DINT	immediate tag	Number of Destination elements to copy

Ladder Diagram

Structured Text

Operand	CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers Data Type	CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Format	Description
Source	SINT INT DINT LINT	SINT INT DINT LINT	tag	Initial element to copy
	REAL String type structure	USINT UINT UDINT ULINT REAL LREAL String type structure REF_TO_AXIS_VIRTUAL REF_TO_AXIS_CONSU MED REF_TO_AXIS_GENERIC_		
		DRIVE REF_TO_AXIS_SERVO REF_TO_AXIS_SERVO_DR IVE REF_TO_AXIS_CIP_DRIVE		
Dest	SINT INT DINT LINT REAL String type structure	SINT INT DINT LINT USINT UDINT ULINT REAL LREAL String type structure	tag	Initial element to be overwritten by the Source
Length	SINT INT DINT	SINT INT DINT	immediate tag	Number of Destination elements to copy

See Structured Text Syntax for more information on the syntax of expressions within structured text.

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Index Through Arrays for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.	
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.	
	The instruction copies the data.	
Postscan	N/A	

Structured Text

Condition/State	Action Taken	
Prescan	See Prescan in the Ladder Diagram table	
Normal execution	See Rung-condition-in is true in Ladder Diagram table.	
Postscan	See Postscan in the Ladder Diagram table.	

During execution of the COP and CPS instructions, other controller actions may try to interrupt the copy operation and change the source:

If the source or destination is:		And need to:	Then select:	Notes	
•	produced tag	Prevent the source data from	CPS	Tasks that attempt to interrupt	
•	consumed tag	changing during the copy		a CPS instruction are delayed	
•	I/O data	operation		until the instruction is done.	
•	data that another task			To estimate the execution time	
	can overwrite			of the CPS instruction, refer	
•	non-atomic tag that is			to the ControlLogix System	
	written to by a remote			User Manual, publication	
	device			1756-UM001.	
				Use interlock application code	
				to ensure a remote client	
				is not updating the source	
				while the CPS instruction is	
				executing.	

If the source or destination is:	And need to:	Then select:	Notes
	Allow the source data to change during the copy operation	COP	
None of the above	>	СОР	

The COP and CPS instructions operate on contiguous memory and perform a straight byte-to-byte memory copy.

When the Source and Dest are different data types the number of bytes copied equals the smaller of:

- Requested amount equals Length x (the number of bytes in a destination element)
- The number of bytes in the destination tag
- For

Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, or GuardLogix 5580 controller

s: the number of bytes in the source tag

Tip: The end of the destination or source tag is defined as the last byte of the base tag. If the tag is a structure, the end of the tag is the last byte of the last element of the structure. This means the COP and CPS instruction could write past the end of a member array but will never write past the end of the base tag.

IMPORTANT: Test and confirm that the instruction does not change data that it should not change.

Examples

Example 1

Copy an array.

When enabled, the COP instruction copies 40 bytes from array_4 to array_5.

array_4 is a DINT (4 bytes per element) and contains 10 elements (total size = 40 bytes)

array_5 is a DINT (4 bytes per element) and contains 10 elements (total size = 40 bytes).

The Length says 10 destination elements should be copied so 40 bytes are copied.

Ladder Diagram

COP		
 Copy File	e	
Source	array_4[0]	
Dest	array_5[0]	
Length	10	

Structured Text

COP(array_4[0],array_5[0],10);

Example 2

Copy a structure.

When enabled, the COP instruction copies the structure timer_1 into element 5 of array_timer.

timer_1 is a TIMER (total size = 12 bytes).

array_timer is a TIMER (12 bytes per element) and contains 10 elements (total size = 120 bytes).

The Length says 1 destination elements so 12 bytes are copied.

Ladder Diagram

COP	1
 Copy File	<u> </u>
Source timer_1	
Dest array_timer[5]	
Length 1	

Structured Text

COP(timer_1,array_timer[5],1);

Example 3

Copy array data while preventing the data from being changed until the copy is complete.

The project_data array (100 elements) stores a variety of values that change at different times in the application. To send a complete image of project_data at one instance in time to another controller, the CPS instruction copies project_data to produced_array. While the CPS instruction copies the data, no I/O updates or other tasks can change the data. The produced_array tag produces the data on a ControlNet network for consumption by other controllers.

project_data is a DINT (4 bytes per element) and contains 100 elements (total size = 400 bytes)

produced_array is a DINT (4 bytes per element) and contains 100 elements (total size = 400 bytes).

The Length says 100 destination elements so 400 bytes are copied.

Ladder Diagram

Structured Text

CPS(project_data[0],produced_array[0],100);

Example 4

Copy data to a produced tag while preventing the data from being sent until the copy is complete.

Local:0:1.Data stores the input data for the DeviceNet network that is connected to the 1756-DNB module in slot 0. To synchronize the inputs with the application, the CPS instruction copies the input data to input_buffer. While the CPS instruction copies the data, no I/O updates can change the data. As the application executes, it uses for its inputs the input data in input_buffer.

Local:0:I.Data is a DINT (4 bytes per element) and contains 2 elements (total size = 8 bytes)

input_buffer is a DINT (4 bytes per element) and contains 20 elements (total size = 80 bytes).

The Length says 20 destination elements should be copied (4 X 20 = 80 bytes). However the source can only provide 8 bytes so 8 bytes are copied.

Ladder Diagram

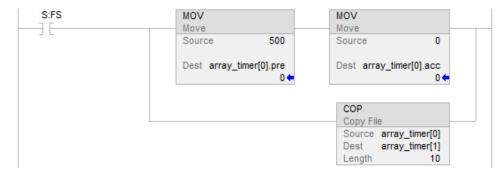
CPS	
Synchro	nous Copy File
Source	Local:0:I.Data[0]
Dest	input_buffer[0]
Length	20

Structured Text

CPS(Local:0:I.Data[0], input_buffer[0], 20);

Example 5

Initialize an array structure, initialize the first element and the use COP to replicate it to the rest of the array.


array_timer		
array_timer[0]		First the instruction copies timer[0] values to timer[1]
array_timer[1]		Then the instruction copies timer[1] values to timer[2]
array_timer[2]		Then the instruction copies timer[2] values to timer[3]
array_timer[3]		Then the instruction copies timer[3] values to timer[4]
array_timer[4]	- 1	
array_timer[5] • array_timer[10]		Finally, the instruction copies timer[9] values to timer[10]

This example initializes an array or timer structures. When enabled, the MOV instructions initialize the .PRE and .ACC values of the first array_timer element. When enabled, the COP instruction copies a contiguous block of bytes, starting at array_timer[0]. The length is nine timer structures.

array_timer is a TIMER (12 bytes per element) and contains 15 elements (total size = 180 bytes)

The Length says 10 destination elements so 120 bytes are copied.

Ladder Diagram

Structured Text

IF S:FS THEN

array_timer[0].pre := 500;

array_timer[0].acc := 0;

COP(array_timer[0],array_timer[1],10);

END_IF;

Example 6

Copy different sized arrays.

When enabled, the COP instruction copies bytes from SINT array_6 to DNT array_7.

array_6 is a SINT (1 byte per element) and contains 5 elements (total size = 5 bytes)

array_7 is a DINT (4 bytes per element) and contains 10 elements (total size = 40 bytes).

The Length says 20 destination elements should be copied (4 X 20 = 80 bytes). However the dest can only accept 40 bytes and the source can only provide 5 bytes so 5 bytes are copied.

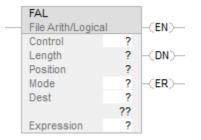
Ladder Diagram

COP		
 Copy File	e	
Source	array_4[0]	
Dest	array_5[0]	
Length	10	

Structured Text

COP(array_4[0],array_5[0],10);

File Arithmetic and Logic (FAL)


This instruction applies to the Compact GuardLogix 5370 and Compact GuardLogix 5380, CompactLogix 5370, CompactLogix 5380, and CompactLogix 5480, ControlLogix 5570 and ControlLogix 5580, and GuardLogix 5570 and GuardLogix 5580 controllers.

The FAL instruction performs copy, arithmetic, logic, and function operations on data stored in an array. When the rung-condition-in of the FAL instruction transitions from false to true, the expression given will be executed over the specified mode of iteration.

There are rules for allowable operators in safety applications. See Valid Operators.

Available Languages

Ladder Diagram

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Control	CONTROL	CONTROL	Tag	Control structure for the operation
Length	DINT	DINT	Immediate	This represents the CONTROL structure .LEN
Position	DINT	DINT	Immediate	This represents the CONTROL structure .POS
Mode	DINT	DINT	Immediate	Shows how to distribute the operation. Select INC, ALL, or enter number in the range of 1 to 2147483647
Expression	SINT INT DINT REAL	SINT INT DINT LINT USINT UDINT ULINT REAL LREAL	Immediate Tag	An expression consisting of tags and/or immediate values separated by operators.
Destination	SINT INT DINT REAL	SINT INT DINT LINT USINT UDINT ULINT REAL LREAL	Tag	The value of the Expression will be stored in destination.

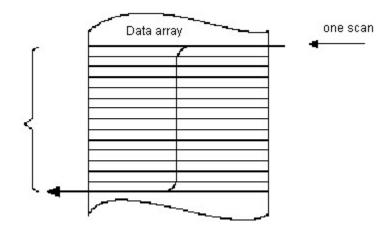
Length and Position (corresponding to .LEN and .POS in the control tag) are pseudo-operands. For details, see Pseudo-operand initialization on page 856.

CONTROL Structure

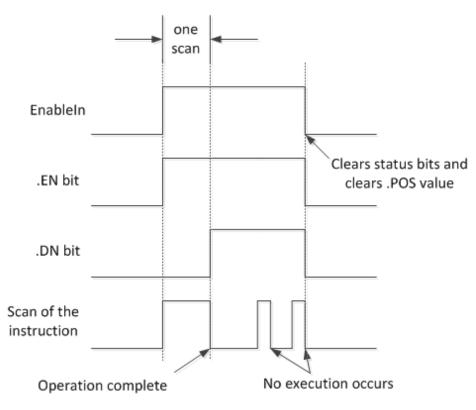
Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the FAL
		instruction is enabled.
.DN	BOOL	The done bit is set when the instruction
		has operated on the last element (.POS
		= .LEN).
.ER	BOOL	When an overflow occurs, both platforms
		will set .ER and sop executing the
		instruction.
		The following controllers will generate an
		overflow:
		CompactLogix 5370
		ControlLogix 5570
.LEN	DINT	The length specifies the number of
		elements in the array on which the FAL
		instruction operates.
.POS	DINT	The position is initialized to 0 when the
		instruction starts and is incremented
		each time the loop operates.

The value of the expression is stored in the specified destination tag. When an overflow occurs, it will set the ER bit and stop the execution. Once FAL completes all of the configured iterations, the .DN bit will be set.

Select Mode of Operation

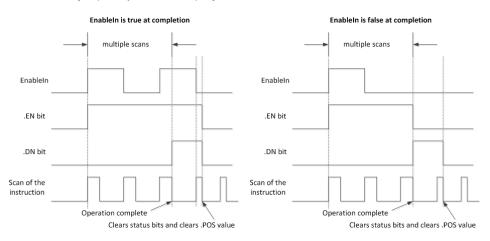

For FAL instructions, the mode tells the controller how to distribute the array operation.

lf:	Select this mode:
Operating on all of the specified elements in an array before continuing to the next instruction.	AII
Distributing array operation over a number of scans. Enter the number of elements to operate on per scan (1-2147483647).	Numerical
Manipulating one element of the array each time the EnableIn goes from false to true.	Incremental

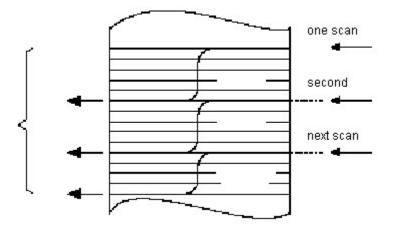

All Mode

In All Mode, the instruction operates on all the specified elements of the array before continuing to the next instruction. The operation begins when the instruction's EnableIn goes from false to true. The position (.POS) value in the control structure points to the element in the array that the instruction is currently using. Operation stops when

the .POS value equals or exceeds the .LEN value, and when overflow occurs in the expression and the .ER bit is set to true.



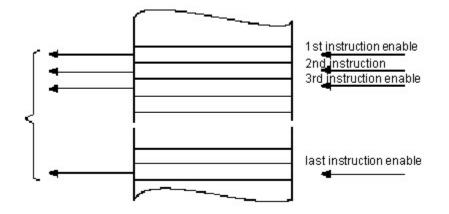
The following timing diagram shows the relationship between status bits and instruction operation. When the instruction execution is complete, the .DN bit is true. The .DN bit, the .EN bit, and the .POS value are cleared when the EnableIn is false. Only then can another execution of the instruction be triggered by a false-to-true transition of EnableIn.


Numerical Mode

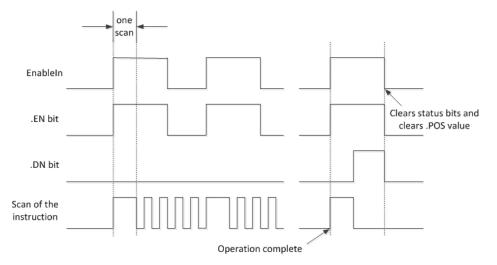
Numerical mode distributes the array operation over a number of scans. Use this mode when working with non-timecritical data or large amounts of data. Enter the number of elements to operate on for each scan, which keeps scan time shorter. Execution is triggered when the EnableIn goes from false to true. Once triggered, the instruction is executed each time it is scanned for the number of scans necessary to complete operating on the entire array. Once triggered, EnableIn can change repeatedly without interrupting execution of the instruction.

Avoid using the results of a file instruction operating in numerical mode until the .DN bit is set.

The following timing diagram shows the relationship between status bits and instruction operation. When the instruction execution is complete, the .DN bit is set.



If the EnableIn is true at completion, the .EN and .DN bit are true until the EnableIn goes false. When the EnableIn goes false, these bits are cleared and the .POS value is cleared.


If the EnableIn is false at completion, the .EN bit is cleared immediately. One scan after the .EN bit is cleared, the .DN bit and the .POS value are cleared.

Incremental Mode

Incremental mode manipulates one element of the array each time the instruction's EnableIn goes from false to true.

The following timing diagram shows the relationship between status bits and instruction operation. Execution occurs only in a scan in which the EnableIn goes from false to true. Each time this occurs, only one element of the array is manipulated. If the EnableIn remains true for more than one scan, the instruction only executes during the first scan.

The .EN bit is set when EnableIn is true. The .DN bit is set when the last element in the array has been manipulated. When the last element has been manipulated and the EnableIn goes false, the .EN bit, the .DN bit, and the .POS value are cleared.

The difference between incremental mode and numerical mode at a rate of one element per scan is:

Numerical mode with any number of elements per scan requires only one false-to-true transition of the EnableIn to start execution. The instruction continues to execute the specified number of elements each scan until completion regardless of the state of the EnableIn.

Incremental mode requires the EnableIn to change from false to true to manipulate one element in the array.

Format expressions

For each operator that you use in an expression, you must provide one or two operands (tags or immediate values). Use the following table to format operators and operands within an expression.

For operators that operate on:	Use this format:	Example
One operand	operator(operand)	ABS(tag)
Two operands	operand_a operator operand_b	tag_b + 5
		tag_c AND tag_d
		(tag_e**2) MOD (tag_f / tag_g)

Determine the order of operation

The operations in the expression are performed by the instruction in a prescribed order, not necessarily the order they appear. The order of operation can be specified by grouping terms within parentheses, forcing the instruction to perform an operation within the parentheses ahead of other operations.

Operations of equal order are performed from left to right.

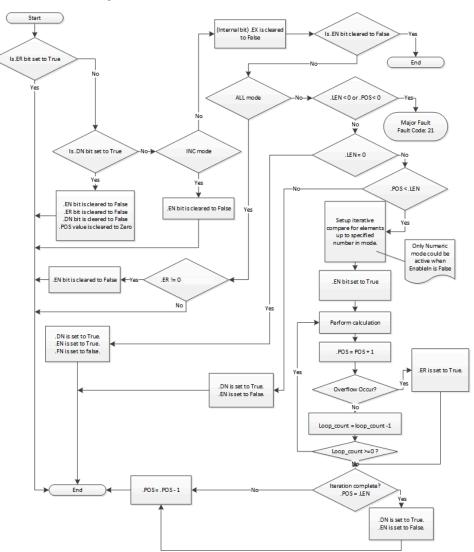
Order	Operation
1	()
2	ABS, ACOS, ASIN, ATAN, COS, DEG, BCD_TO, LN, LOG, RAD, SIN,
	SQRT, TAN, TO_BCD, TRUNC
3	**
4	- (negate), NOT
	*, /, MOD
6	- (subtract), +
7	AND
8	XOR
9	OR

Affects Math Status Flags

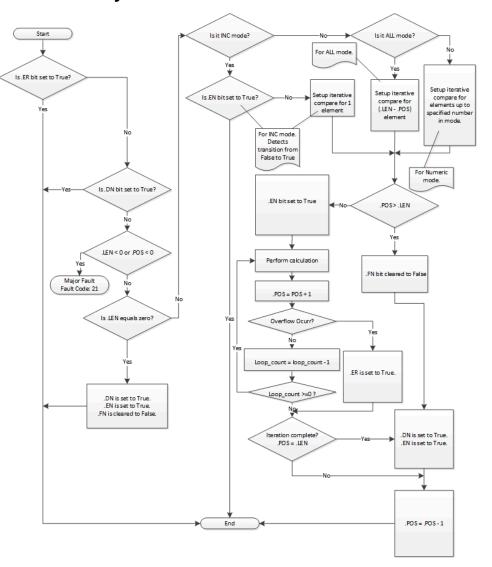
Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	No
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

A major fault will occur if:	Fault type	Fault code
.POS < 0 or .LEN < 0	4	21

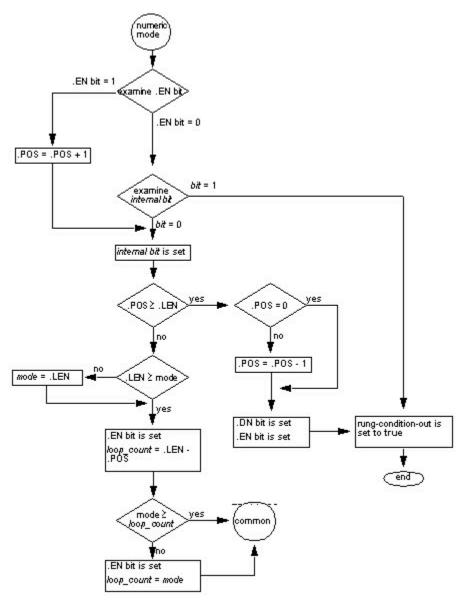

See Index Through Arrays for array-indexing faults.

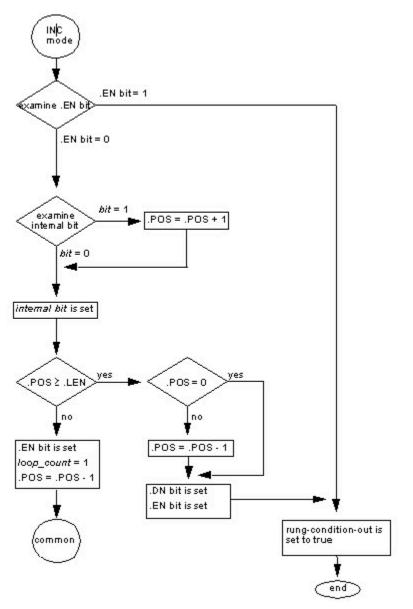
Execution


Ladder Diagram

Condition / State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in. See FAL Flow Chart (Rung-condition-out is False)
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in. See FAL Flow Chart (Rung-condition-out is True)
Postscan	N/A

FAL Flow Chart (Rung-condition-out is False)

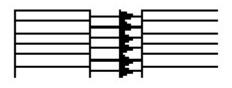

FAL Flow Chart (Rung-condition-out is True)


FAL Flow Chart (All Mode)

FAL Flow Chart (Numerical Mode)

FAL Flow Chart (Incremental Mode)

Examples


Example 1

Array-to-array.

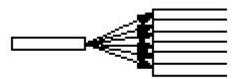
Ladder Diagram

FAL		
File Arith/Lo	gical	-(EN)
Control	control_2	
Length	10 🔶	
Position	0 🔶	
Mode	ALL	-(ER)
Dest	array_1[control_2.POS]	
	0	
Expression	array_2[control_2.POS]	

When enabled, the FAL instruction copies each element of array_2 into the same position within array_1.

Expression: Destina array_2[control_2.pos] array_1

Destination: array_1[control_2.pos]

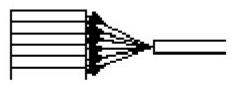

Example 2

Element-to-array copy.

Ladder Diagram

FAL	
File Arith/Logical	-(EN)
Control	control_2
Length	10 🗲 -(DN)
Position	0 🖛
Mode	ALL (ER)-
Dest array_2[0,com	ntrol_2.POS]
	0
Expression	value_1

When enabled, the FAL instruction copies value_1 into the first 10 positions of the second dimension of array_2.


Destination: array_2[0,control_2.pos]

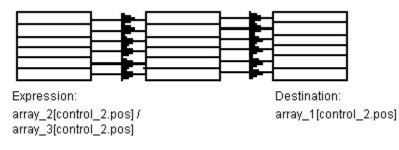
Example 3:

Array-to-element copy.

FAL	
File Arith/Logical	-(EN)
Control control_1	
Length 10 4	-(DN)
Position 0 4	
Mode INC	-(ER)
Dest value_1	
24	
Expression array_1[control_1.POS]	

Each time the FAL instruction is enabled, it copies the current value of array_1 to value_1. The FAL instruction uses incremental mode, so only one array value is copied each time the instruction is enabled. The next time the instruction is enabled, the instruction overwrites value_1 with the next value in array_1.

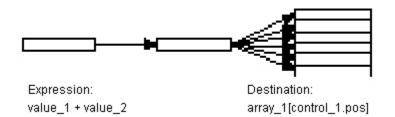
Expression: array_1[control_1.pos]


Destination: value_1

Example 4:

Arithmetic operation: array / array to array

When enabled, the FAL instruction divides the value in the current position of array_2 with the value in the current position of array_3 and stores the result in the current position of array_1.

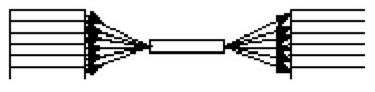


Example 5:

Arithmetic operation: array / array to array

FAL	
File Arith/Logical	-(EN)
Control	control_1
Length	10 🖛 -(DN)
Position	0 🖛
Mode	ALL (ER)-
Dest array_1[con	trol_1.POS]
	0
Expression value_	1 + value_2

When enabled, the FAL instruction adds value_1 and value_2 and stores the result in the current position of array_1.



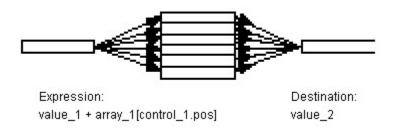
Example 6:

Arithmetic operation: array + element to array

FAL	
File Arith/Logical	(EN)-
Control	control_1
Length	60 🗲 – (DN) –
Position	0 🖛
Mode	6 -(ER)-
Dest array	_3[control_1.POS]
	0
Expression array_1[control_	1.POS] + value_1

When enabled, the FAL instruction adds the value at the current position in array_1 to value_1 and stores the result in the current position in array_3. The instruction must execute 10 times for the entire array_1 and array_3 to be manipulated.

Expression: array_1[control_1.pos] + value_1

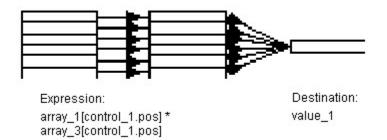

Destination: array_3[control_1.pos]

Example 7:

Arithmetic operation: (element + array) to element

FAL	
File Arith/Logical	_(EN)—
Control	control_1
Length	10 (_(DN)
Position	0 🔶
Mode	
Dest	value_2
	-0
Expression value_1 + arr	ay_1[control_1.POS]

Each time the FAL instruction is enabled, it adds value_1 to the current value of array_1 and stores the result in value_2. The FAL instruction uses incremental mode, so only one array value is added to value_1 each time the instruction is enabled. The next time the instruction is enabled, the instruction overwrites value_2.



Example 8:

Arithmetic operation: (array * array) to element

When enabled, the FAL instruction multiplies the current value of array_1 by the current value of array_3 and stores the result in value_1. The FAL instruction uses incremental mode, so only one pair of array values is multiplied each time the instruction is enabled. The next time the instruction is enabled, the instruction overwrites value_1.

File Average (AVE)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The AVE instruction calculates the mean of a set of values.

Available Languages

Ladder Diagram

AVE		
Average File		-(EN)
Array	?	
Dim. To Vary	?	-(DN)
Dest	?	
	??	-(ER)
Control	?	
Length	?	
Position	?	

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion.

Ladder Diagram

Operand	Туре	Format	Description
Array Tag	SINT	tag	Find the average of the values
	INT		in this array
	DINT REAL		specify the first element of the group of elements to average Do not use CONTROL.POS in the subscript
Dimension to vary	DINT	immediate (0, 1, 2)	Which dimension to use the order of the dimensions is: array[0,1,2]
Destination	SINT INT DINT REAL	tag	Result of the operation
Control	CONTROL	tag	Control structure for the operation
Length	DINT	immediate	Number of elements of the array to average
Position	DINT	immediate	Offset into the specified array which identifies the current

Operand	Туре	Format	Description
			element that the instruction is
			accessing.
			initial value is typically O

Length and Position (corresponding to .LEN and .POS in the control tag) are pseudo-operands. For details, see Pseudo-operand initialization on page 856.

Description

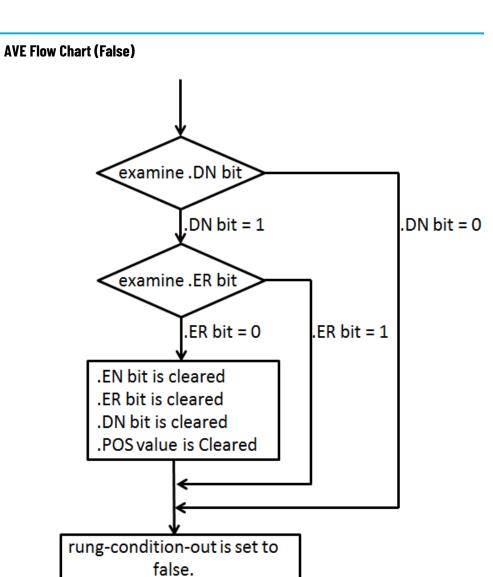
The AVE instruction calculates the average of a set of values.

IMPORTANT: Make sure the Length does not cause the instruction to exceed the specified Dimension to vary. If this happens, the destination will be incorrect. For more information, see Viewing an Array as a Block of Memory.

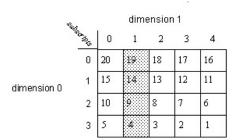
If an overflow occurs during expression evaluation, the instructions reads past the end of an array, the instruction sets the ER bit and stops execution

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, see Math Status Flags.
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

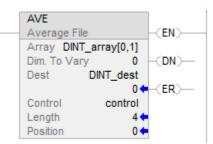

Major/Minor Faults

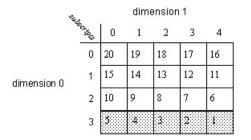
None specific to this instruction. See Common Attributes for operand related faults.


Execution

Ladder Diagram

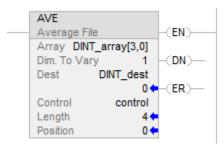
Condition/State	Action Taken	
Prescan	The .EN bit is cleared.	
	The .DN bit is cleared.	
	If .ER bit is zero during prescan, all the control bits	
	(.DN, .EN, .EU, .EM, .UL, .IN and .FD) will be cleared to zero.	
Rung-condition-in is false.	See AVE Flow Chart (False)	
Rung-condition-in is true.	The AVE instruction calculates the average by adding all the specified elements in the array and dividing by the number of	
	elements.	
Postscan	N/A.	


Example 1


$$AVE = \frac{19 + 14 + 9 + 4}{4} = \frac{46}{4} = 11.5$$

 $dint_ave = 12$

Ladder Diagram



Example 2

$$AVE = \frac{5+4+3+2+1}{5} = \frac{15}{5} = 3$$

dint_ave = 3

Ladder Diagram

File Fill (FLL)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, CompactLogix 5380, CompactLogix 5480, and ControlLogix 5580 controllers. Controller differences are noted where applicable.

The FLL instruction fills a block of memory with the provided source value. The Source remains unchanged.

If the destination array is SINT, INT, DINT, or REAL, and the type of source value is different, the source value will be converted to the destination type before it is stored. Smaller integer types will be converted to large ones by signextension.

If the destination array is a structure, the source value will be written without conversion.

Available Languages

Ladder Diagram

FLL	
 Fill File	-
Source	?
Dest	?
Length	?

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions.

Ladder Diagram

Operand	Data Type	Format	Description
Source	SINT	immediate	Element to copy
	INT	tag	
	DINT		
	REAL		
Destination	SINT	tag	Initial element to be
	INT		overwritten by the Source.
	DINT		
	REAL		
	structure		
Length	DINT	immediate	Number of destination
	INT	tag	elements to fill.
	SINT		

The number of bytes filled is the smaller of:

- Requested amount = Length x (number of bytes in a destination element)
- The number of bytes in the destination tag

Tip: The end of the destination tag is defined as the last byte of the base tag. If the tag is a structure, the end of the tag is the last byte of the last element of the structure. This means the FLL instruction could write past the end of a member array, but will never write past the end of the base tag. Test and confirm that the FLL instruction does not change data that should not be changed.

For best results, the Source and Destination should be the same type. Use FLL to fill a structure with a constant, such as 0s.

If initializing a structure, be sure to have one instance containing the initial values, and use COP to replicate it. FLL can be used, for example, zero out the entire structure.

If the Source is:	And the Destination is:	The Source is converted to:
SINT, INT, DINT, or REAL	SINT	SINT
SINT, INT, DINT, or REAL	INT	INT
SINT, INT, DINT, or REAL	DINT	DINT
SINT, INT, DINT, or REAL	REAL	REAL

Conversion from larger integers to smaller integers will result in truncation (the high bits are discarded). Once the source is converted, it is written to the destination N times, where N = byte count. Sign extension results when converting from smaller integers to larger integers. REAL numbers will be rounded when converted to integers.

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction fills the memory.
Postscan	N/A

Example

The FLL instruction copies number of destination elements specified by the Length from the DINT_src type source operand into a REAL_dest type destination.

Ladder Diagram

FLL		
 Fill File		
Source	DINT_src	
Dest	REAL_dest	
Length	1	

File Search and Compare (FSC)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, CompactLogix 5380, CompactLogix 5480, and ControlLogix 5580 controllers. Controller differences are noted where applicable.

The FSC instruction compares values in an array, element by element.

Available Languages

Ladder Diagram

FSC		
 File Search/Cor	mpare	-(EN)
Control	?	
Length	?	-(DN)
Position	?	
Mode	?	-(ER)
Expression	?	

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data conversions on page 851.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Control	CONTROL	CONTROL	Tag	Control structure for the operation
Length	DINT	DINT	Immediate	This represents the CONTROL structure .LEN
Position	DINT	DINT	Immediate	This represents the CONTROL structure .POS
Mode	DINT	DINT	Immediate	Shows how to distribute the operation. Select INC, ALL, or enter number in the range of 1 to 2147483647
Expression	SINT INT DINT REAL STRING	SINT INT DINT LINT USINT UDINT ULINT REAL LREAL String type	Immediate Tag	An expression consisting of tags and/or immediate values separated by operators

Length and Position (corresponding to .LEN and .POS in the control tag) are pseudo-operands. For details, see Pseudo-operand initialization on page 856.

CONTROL Structure

Mnemonic	Data Type	Description	
.EN	BOOL	The enable bit indicates the FSC instruction is enabled.	
.DN	BOOL	The done bit is set when the instruction has operated on the last element (.POS = .LEN).	
.ER	BOOL	The error bit is not modified.	
.IN	BOOL	The inhibit bit indicates the FSC instruction detected a true comparison.	

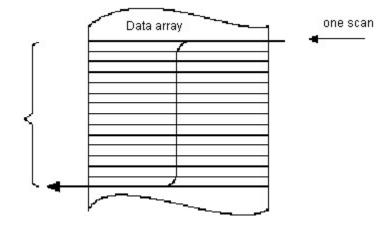
Mnemonic	Data Type	Description
		You must clear this bit to continue the search operation.
.FD	BOOL	The found bit indicates the FSC instruction detected a true comparison.
.LEN	DINT	The length specifies the number of elements in the array on which the instruction operates.
.POS	DINT	The position contains the position of the current element that the instruction is accessing.

Description

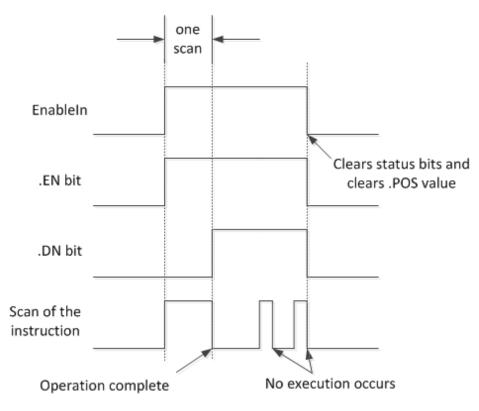
When the EnableIn of the FSC instruction transitions from false to true, the expression is evaluated over the specified mode of iteration.

If the evaluation result is true, the instruction sets the .FD bit, and the .POS value reflects the array position where the instruction found the true comparison. The instruction sets the .IN bit to prevent further iteration.

Select Mode of Operation

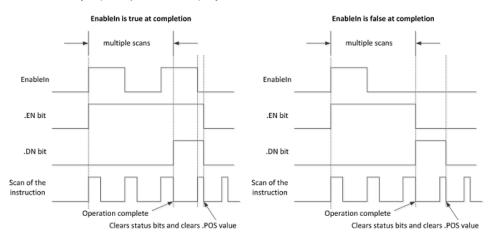

For FSC instructions, the mode tells the controller how to distribute the array operation.

If you want to:	Select this mode:
Operate on all of the specified elements in an array before continuing on to the next instruction.	All
Distribute array operation over a number of scans. Enter the number of elements to operate on per scan (1-2147483647).	Numerical
Manipulate one element of the array each time the EnableIn goes from false to true.	Incremental

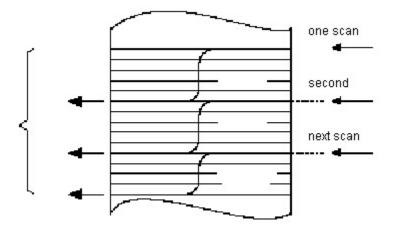

All Mode

In All mode, all the specified elements in the array are operated on before continuing on to the next instruction. The operation begins when the instruction's EnableIn goes from false to true. The position (.POS) value in the control

structure points to the element in the array that the instruction is currently using. Operation stops under two conditions. When the .POS value equals or exceeds the .LEN value, AND when the expression evaluates to true.



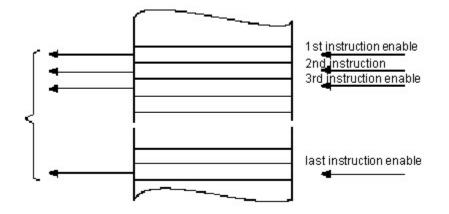
The following timing diagram shows the relationship between status bits and instruction operation. When the instruction execution is complete, the .DN bit is true. The .DN bit, the .EN bit, and the .POS value are cleared when the EnableIn is false. Only then can another execution of the instruction be triggered by a false-to-true transition of EnableIn.


Numerical Mode

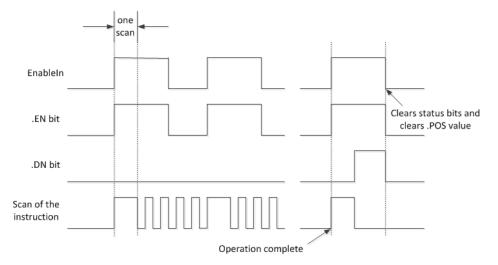
Numerical mode distributes the array operation over a number of scans. This mode is useful when working with nontime-critical data or large amounts of data. You enter the number of elements to operate on for each scan, which keeps scan time shorter. Execution is triggered when the EnableIn goes from false to true. Once triggered, the instruction is executed each time it is scanned for the number of scans necessary to complete operating on the entire array. Once triggered, EnableIn can change repeatedly without interrupting execution of the instruction.

Avoid using the results of a file instruction operating in numerical mode until the .DN or .IN bit is true.

The following timing diagram shows the relationship between status bits and instruction operation. When the instruction execution is complete, the .DN bit is true.



If the EnableIn is true at completion, the .EN and .DN bit are true until the EnableIn goes false. When the EnableIn goes false, these bits are cleared and the .POS value is cleared.


If the EnableIn is false at completion, the .EN bit is cleared immediately. One scan after the .EN bit is cleared, the .DN bit and the .POS value are cleared.

Incremental Mode

Incremental mode manipulates one element of the array each time the instruction's EnableIn goes from false to true.

The following timing diagram shows the relationship between status bits and instruction operation. Execution occurs only in a scan in which the EnableIn goes from false to true. Each time this occurs, only one element of the array is manipulated. If the EnableIn remains true for more than one scan, the instruction only executes during the first scan.

The .EN bit is set when rung-condition-in is true. The .DN bit is set when the last element in the array has been manipulated. When the last element has been manipulated and the rung-condition-in goes false, the .EN bit, the .DN bit, and the .POS value are cleared.

The difference between incremental mode and numerical mode at a rate of one element per scan is:

Numerical mode with any number of elements per scan requires only one false-to-true transition of the EnableIn to start execution. The instruction continues to execute the specified number of elements each scan until completion regardless of the state of the EnableIn.

Incremental mode requires the EnableIn to change from false to true to manipulate one element in the array.

Format expressions

For each operator that you use in an expression, you must provide one or two operands (tags or immediate values). Use the following table to format operators and operands within an expression.

For operators that operate on:	perators that operate on: Use this format:	
One operand	operator(operand)	ABS(tag)
Two operands	operand_a operator operand_b	tag_b + 5
		tag_c AND tag_d
		(tag_e**2) MOD (tag_f / tag_g)

Determine the order of operation

The operations you write into the expression are performed by the instruction in a prescribed order, not necessarily the order you write them. You can override the order of operation by grouping terms within parentheses, forcing the instruction to perform an operation within the parentheses ahead of other operations.

Operations of equal order are performed from left to right.

Order	Operation	
1	()	
2	ABS, ACOS, ASIN, ATAN, COS, DEG, BCD_TO, LN, LOG, RAD, SIN,	
	SQRT, TAN, TO_BCD, TRUNC	
3	**	
4	- (negate), NOT, !	
5	*, /, MOD	
6	- (subtract), +	
7	AND	
8	XOR	
9	OR	
10	<, <=, >, >=, =, <>	
11	&&	
12	٨٨	
13	l	

Use strings in an expression

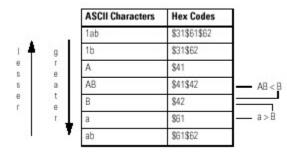
To use strings of ASCII characters in an expression, follow these guidelines:

An expression lets you compare two string tags.

You cannot enter ASCII characters directly into the expression.

Only the following operands are permitted:

Operator	Description
=	Equal
<	Less than
<=	Less than or equal
>	Greater than


Operator	Description
>=	Greater than or equal
\$	Not equal

Strings are equal if their characters match.

ASCII characters are case-sensitive. Uppercase A (\$41) is not equal to lowercase a (\$61).

The hexadecimal values of the characters determine if one string is less than or greater than another string.

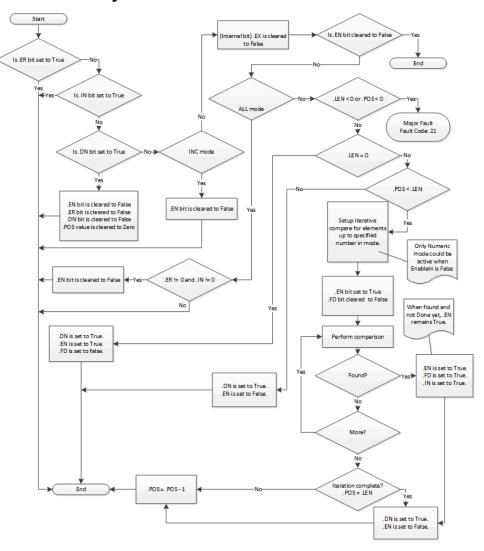
When the two strings are sorted as in a telephone directory, the order of the strings determine which one is greater.

Affects Math Status Flags

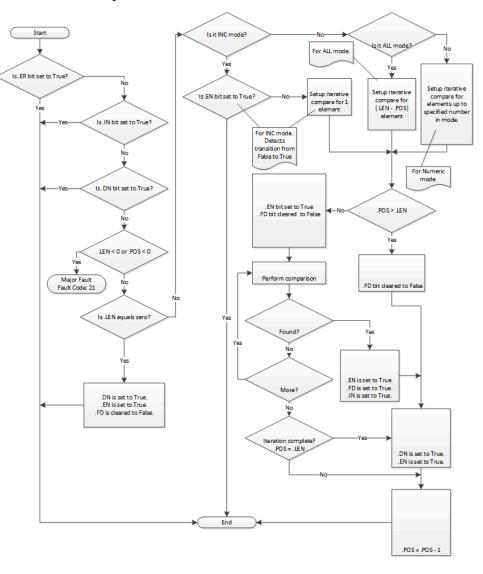
Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	No
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

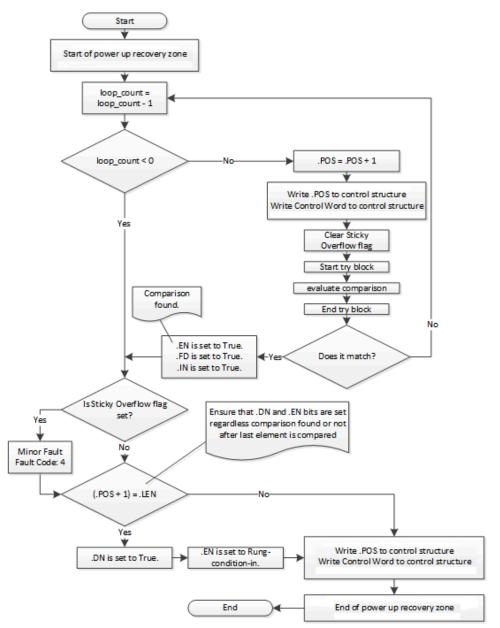
A major fault will occur if:	Fault type	Fault code
.POS < 0 or .LEN < 0	4	21

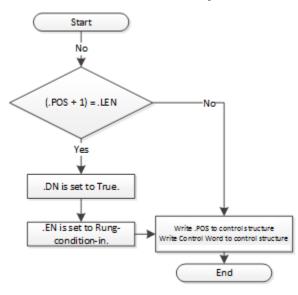

See Common Attributes for operand related faults. See Index Through Arrays for array-indexing faults.

Execution


Ladder Diagram

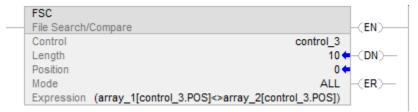
Condition / State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	See FSC Flow Chart (Rung-condition-out is False)	
Rung-condition-in is true	See FSC Flow Chart (Rung-condition-out is True)	
Postscan	N/A	


FSC Flow Chart (Rung-condition-out is False)

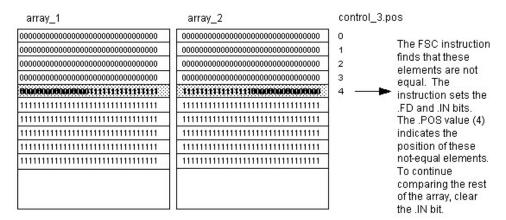

FSC Flow Chart (Rung-condition-out is True)

FSC Flow Chart (FSC Common Subflow)

FSC Flow Chart (FSC Common Exception Subflow)



Examples


Example 1

Search between two DINT arrays for elements that are not equal.

Ladder Diagram

When enabled, the FSC instruction compares each of the first 10 elements in array_1 to the corresponding elements in array_2. When an element is found that is not equal, the FD and IN bits are set. The POS identifies the location of the not equal elements. Clear the IN bit to search the rest of the array.

Example 2

Search for a string within a STRING array.

When enabled, the FSC instruction compares characters in code to 10 elements in code_table.

When a string in code_table is found that matches code, the FD and IN bits are set. The POS identifies the location of the matching strings. Clear the IN bit to search the rest of the array.

FSC	
File Search/Compare	-(EN)
Control control_1	
Length 10 🗧	-(DN)
Position 0 🗧	
Mode ALL	-(ER)
Expression MySearchKey = reference[control_1.pos]	

File Sort (SRT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, CompactLogix 5380, CompactLogix 5480, and ControlLogix 5580 controllers. Controller differences are noted where applicable.

The SRT instruction sorts a set of values in one dimension (Dim to vary) of the array into ascending order.

Available Languages

Ladder Diagram

	SRT		
_	Sort File		-(EN)
	Array	?	
	Dim. To Vary	?	-(DN)
	Control	?	
	Length	?	
	Position	?	

Function Block

This instruction is not available in function block.

Structured Text

SRT(Array,Dimtovary,Control);

Operands

Ladder Diagram

Operand	Туре	Format	Description
Array	SINT	Array tag	array to sort
	INT		specify the first element of the
	DINT		group of elements to sort
	REAL		

Operand	Туре	Format	Description
Dimension to vary	DINT	Immediate	which dimension to use
		(0, 1, 2)	the order of the dimensions is:
			array[0,1,2]
Control	CONTROL	Tag	control structure for the
			operation
Length	DINT	Immediate	number of elements of the
			array to sort
Position	DINT	Immediate	current element in the array
			initial value is typically 0

Length and Position (corresponding to .LEN and .POS in the control tag) are pseudo-operands. For details, see Pseudo-operand initialization on page 856.

Structured Text

Operand	Туре	Format	Description
Array	SINT	Array tag	array to sort
	INT		specify the first element of the
	DINT		group of elements to sort
	REAL		
Dimension to vary	DINT	Immediate	which dimension to use
		(0, 1, 2)	the order of the dimensions is:
			array[0,1,2]
Control	CONTROL	Tag	control structure for the
			operation
Length	DINT	Immediate	Number of elements of the
			array to sort.
			The specified Length and
			Position values are accessed
			from the .LEN and .POS
			members of the CONTROL
			structure.
Position	DINT	Immediate	current element in the array
			initial value is typically O
			The specified Length and
			Position values are accessed
			from the .LEN and .POS
			members of the CONTROL
			structure.

See Structured Text Syntax for more information on the syntax of expressions within structured text.

CONTROL Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the SRT
		instruction is enabled.
.DN	BOOL	The done bit is set when the instruction
		has operated on the last element in the
		Array.
.ER	BOOL	The error bit is set when either .LEN < 0
		or .POS < 0. Either of these conditions
		also generates a major fault.
		When .ER bit is set, the instruction does
		not execute.
.LEN	DINT	The length word specifies the number
		of elements in the array on which the
		instruction operates.
.POS	DINT	The position word identifies the current
		element that the instruction is accessing.

Description

The SRT instruction sorts a set of values in one dimension (Dim to vary) of the Array into ascending order.

IMPORTANT: You must test and confirm that the instruction does not change data that you don't want it to change.

The SRT instruction operates on contiguous data memory. For the

CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers

only, the scope of the instruction is constrained by the base tag. The SRT instruction will not write data outside of the base tag but can cross member boundaries. If you specify an array that is a member of a structure, and the length exceeds the size of that array you must test and confirm that the SRT instruction does not change data you do not want changed.

In the

CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers

, the data is constrained by the specified member.

In this transitional instruction, the relay ladder toggles the rung-condition-in from false to true for the instruction to execute.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	No
Compact GuardLogix 5380, and GuardLogix 5580 controllers	

Controllers	Affects Math Status Flags	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes	
5370, and GuardLogix 5570 controllers		

Major/Minor Faults

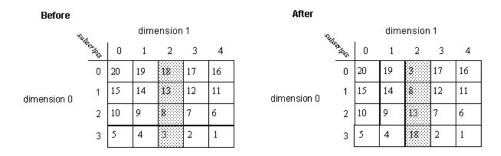
A major fault will occur if:	Fault type	Fault code
.POS < 0 or .LEN < 0	4	21
Dimension to vary > number of dimensions	4	20
Length > end of array	4	20

See Common Attributes for operand related faults.

Execution

Ladder Diagram

Condition / State	Action Taken
Prescan	N/A.
Rung-condition-in is false	.EN bit is cleared to false
	.EN bit is cleared to false
	.DN bit is cleared to false
Rung-condition-in is true	The instruction executes
Postscan	N/A.


Structured Text

Condition / State	Action Taken	
Prescan	See Prescan in the Ladder Diagram table	
Normal execution	Since this instruction requires a transition to execute it is executed false and then true. See the Ladder Diagram table for details.	
Postscan	See Postscan in the Ladder Diagram table.	

Examples

Example 1

Sort DINT_array, which is DINT[4,5].

Ladder Diagram

sort1	SRT
	Sort File (EN)
	Array DINT_array[0,2]
	Dim. To Vary 1 –(DN)–
	Control control_1
	Length 4 🖛
	Position 3 (

Structured Text

IF sort1 then

control_1.LEN := 4;

control_1.POS := 0;

SRT(DINT_array[0,2],0, control_1);

END_IF;

Example 2

Sort DINT_array, which is DINT[4,5].

Before						
Ś	dimension 1					
	Star Bar	0	1	2	3	4
dimension 0	0	20	19	18	17	16
	1	15	14	13	12	11
	2	10	9	8	7	6
	3	5	4	3	2	1

After dimension 1 ans dimension 0

Ladder Diagram

sort1	SRT
	Sort File -(EN)-
	Array DINT_array[2,0]
	Dim. To Vary 1 –(DN)–
	Control control_1
	Length 4 🖛
	Position 3 🖛

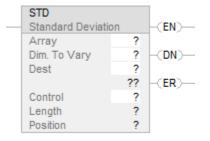
Structured Text

ctrl.LEN := 4;

ctrl.POS := 0;

SRT(DINT_array[0,2],0, ctrl);

File Standard Deviation (STD)


This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The STD instruction calculates the standard deviation of a set of values in one dimension of the Array and stores the result in the Destination.

Available Languages

Ladder Diagram

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion.

Ladder Diagram

Chapter 8 Array File-Misc Instructions

Operand	Туре	Format	Description
Array	SINT	array tag	Find the standard deviation of
	INT		the values in this array
	DINT		specify the first element of
	REAL		the group of elements to use
			in calculating the standard
			deviation
Dimension to vary	DINT	immediate	which dimension to use
		(0, 1, 2)	the order of the dimensions is:
			array[0,1,2]
Destination	REAL	tag	result of the operation
Control	CONTROL	tag	Control structure for the
			operation
Length	DINT	immediate	number of elements of the
			array to use in calculating the
			standard deviation
Position	DINT	immediate	Offset into the specified array
			which identifies the current
			element that the instruction is
			accessing.
			initial value is typically 0

Length and Position (corresponding to .LEN and .POS in the control tag) are pseudo-operands. For details, see Pseudo-operand initialization on page 856.

CONTROL Structure

Mnemonic	Data Type	Description	
.EN	BOOL	The enable bit indicates the STD	
		instruction is enabled.	
.DN	BOOL	The done bit is set when the instruction	
		has operated on the last element in the	
		Array.	
.ER	BOOL	The error bit is set when the instruction	
		generates an overflow. The instruction	
		stops executing until the program clears	
		the .ER bit. The .POS value stores the	
		position of the element that caused the	
		overflow.	
.LEN	DINT	The length word specifies the number	
		of elements in the array on which the	
		instruction operates.	

Mnemonic	Data Type	Description
.POS	DINT	The position word is an offset into the
		specified array which identifies the
		current element that the instruction is
		accessing.

Description

The standard deviation is calculated according to this formula:

Standard Deviation =
$$\sqrt{\frac{\left(\sum_{i=1}^{N} \left[\langle X_{(start+i)} - AVE \rangle^{2} \right] \right)}{(N-1)}}$$

Where:

start = dimension-to-vary subscript of the array operand

xi = variable element in the array

N = number of specified elements in the array

$$\frac{\left(\sum_{i=1}^{N} x_{(start+i)}\right)}{N}$$

IMPORTANT: Make sure the Length does not cause the instruction to exceed the specified Dimension to vary. If this happens, the Destination will be incorrect.

If an overflow occurs during expression evaluation or if the instructions reads past the end of an array, the instruction sets the ER bit and stops execution.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, based on programming language. See Math Status
Compact GuardLogix 5380, and GuardLogix 5580 controllers	Flags.
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

A major fault will occur if:	Fault type	Fault code	
.POS < 0 or .LEN < 0	4	21	

A major fault will occur if:	Fault type	Fault code	
Dimension to vary > number of	4	20	
dimensions			

See Common Attributes for operand-related faults.

Execution

Ladder Diagram

Condition / State	Action Taken
Prescan	The .EN bit is cleared.
	The .DN bit is cleared.
	The .ER bit is cleared.
Rung-condition-in is false	The .EN bit is cleared.
	The .ER bit is cleared.
	The .DN bit is cleared.
	The .POS value is cleared.
	The rung-condition-out is false.
Rung-condition-in is true	Internally, the instruction uses a FAL instruction to calculate the
	average:
	Expression = standard deviation calculation
	Mode = ALL
Postscan	N/A.

Examples

Example 1

Calculate the standard deviation of arrayDint, which is DINT[4,5].

	S.,	dimension 1				
	SWPS CLS	0	1	2	3	4
	0	20	19	18	17	18
dimension 0	1	15	14	13	12	1.4
	2	10	9	8	7	6
	3	5	4	3	2	

$$STD = \sqrt{\frac{\langle 16 - 8.5 \rangle^2 + \langle 11 - 8.5 \rangle^2 + \langle 6 - 8.5 \rangle^2 + \langle 1 - 8.5 \rangle^2}{\langle 4 - 1 \rangle}} = 6.454972$$

real_std = 6.454972

Ladder Diagram

STD
 Standard Deviation -(EN)
Array dint_array[0,4]
Dim. To Vary 0 (DN)-
Dest real_std
0.0 ← (ER)
Control control_1
Length 4+
Position 0 🖛

Example 2

Calculate the standard deviation of dint_array, which is DINT[4,5].

	2.	dimension 1				
	SWPS CLS	0	1	2	3	4
	0	20	19	18	17	16
dimension O	1	15	14	13	12	11
	2	10	9	8	7	6
	3	5	4	3	2	1

Ladder Diagram

STD Standard Deviation Array dint_array[0,0] Dim. To Vary 1 Dest real_std
0.0 ← (ER) Control control_1 Length 5 ← Position 0 ←

Size In Elements (SIZE)

This information applies to the Compact GuardLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, Compact GuardLogix 5480, and ControlLogix 5580 controllers.

The SIZE instruction finds the number of elements (size) in the designated dimension of the Source array or string operand and places the result in the Size operand. The instruction finds the size of one dimension of an array.

The instruction operates on:

- Arrays
- Arrays in a structure
- Arrays that are part of a larger array
- String tags

Available Languages

Ladder Diagram

SIZE		
 Size in Elements	-	
Source	?	
	??	
Dim. To Vary	?	
Size	?	
	??	

Function Block

This instruction is not available in function block.

Structured Text

SIZE(Source,Dimtovary,Size);

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data Conversions.

Ladder Diagram

Operand	Data Type	Format	Description	
Source	SINT	Array tag	First element of the array	y on which the instruction
	INT		is to operate	
	DINT		Tags that are not array a	re not accepted during
	REAL		verification	
	structure			
	String type			
Dimension to Vary	DINT	immediate	Dimension to use:	
		(0, 1, 2)	For the size of:	Enter:
			first dimension	0
			second dimension	1

Operand	Data Type	Format	Description
			third dimension 2
Size	SINT	tag	Tag to store the number of elements in the
	INT		specified dimension of the array
	DINT		
	REAL		

See Structured Text Syntax for more information on the syntax of expressions within structured text.

Affects Math Status Flags

No

Major/Minor Faults

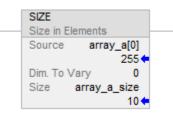
None specific to this instruction. See Index Through Arrays for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.	
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.	
	The instruction executes.	
Postscan	N/A	

Structured Text


Condition/State	Action Taken
Prescan	See Prescan in the Ladder Diagram table
Normal execution	See rung-condition-in is true in Ladder Diagram table.
Postscan	See Postscan in the Ladder Diagram table.

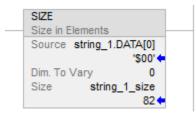
Examples

Example 1

Find the number of elements in dimension 0 (first dimension) of array_a. Store the size in array_a_size. In this example, dimension 0 of array_a has 10 elements.

Ladder Diagram

Structured Text


SIZE(array_a,0,array_a_size);

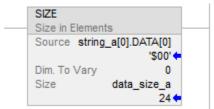
Example 2

Find the number of elements in the DATA member of string_1, which is a string. Stores the size in string_1_size.

In this example, the DATA member of string_1 has 82 elements. The string uses the default STRING data type. Since each element holds one character, string_1 can contain up to 82 characters.

Ladder Diagram

Structured Text

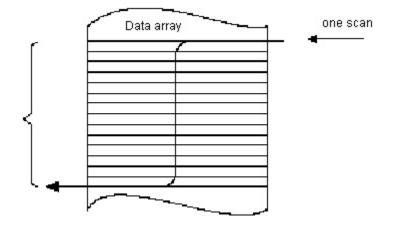

SIZE(string_1.DATA[0],0,string_1_size);

Example 3

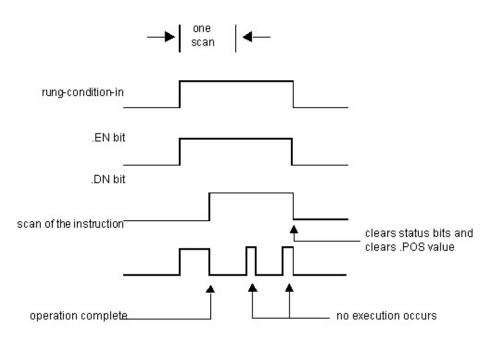
String_a is an array of string structures. The SIZE instruction finds the number of elements in the DATA member of the string structure and stores the size in data_size_a.

In this example, the DATA member has 24 elements. The string structure has a user-specified length of 24.

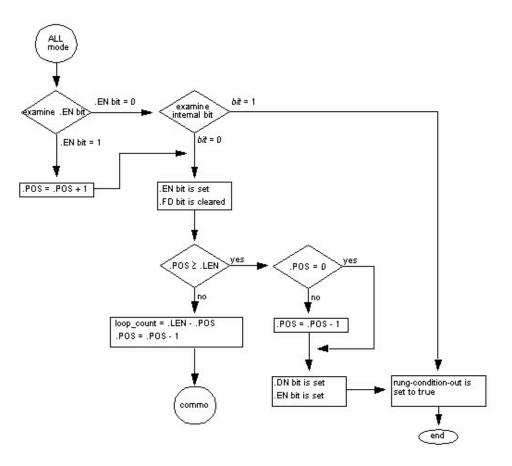
Ladder Diagram



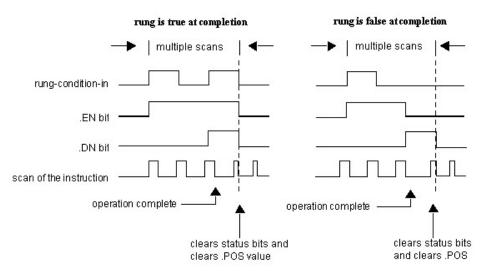
Structured Text


SIZE(string_a.[0].DATA[0],0,data_size_a);

All Mode


In All mode, all the specified elements in the array are operated on before continuing on to the next instruction. The operation begins when the instruction's rung-condition-in goes from false to true. The position (.POS) value in the control structure points to the element in the array that the instruction is currently using. Operation stops when the .POS value equals the .LEN value.

The following timing diagram shows the relationship between status bits and instruction operation. When the instruction execution is complete, the .DN bit is set. The .DN bit, the .EN bit, and the .POS value are cleared when the rung-condition-in is false. Only then can another execution of the instruction be triggered by a false-to-true transition of rung-condition-in

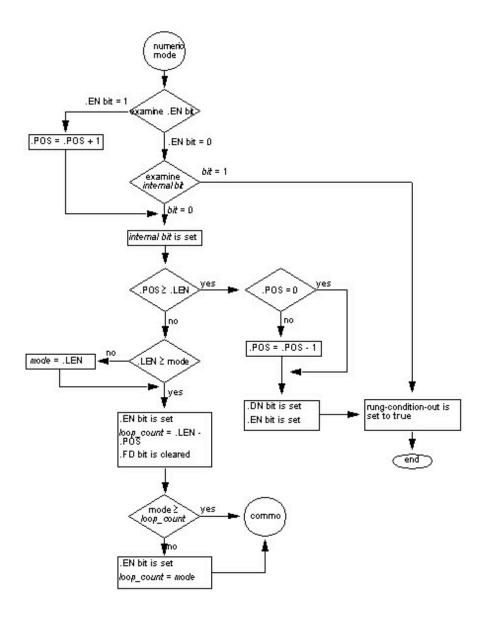

All Mode Flow Chart-FSC

Numerical Mode

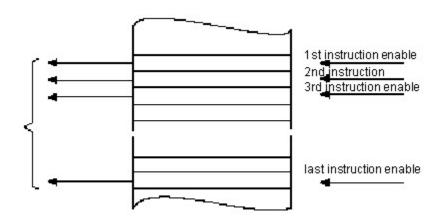
Numerical mode distributes the array operation over a number of scans. This mode is useful when working with nontime-critical data or large amounts of data. You enter the number of elements to operate on for each scan, which keeps scan time shorter.

Execution is triggered when the rung-condition-in goes from false to true. Once triggered, the instruction is executed each time it is scanned for the number of scans necessary to complete operating on the entire array. Once triggered, rung-condition-in can change repeatedly without interrupting execution of the instruction.

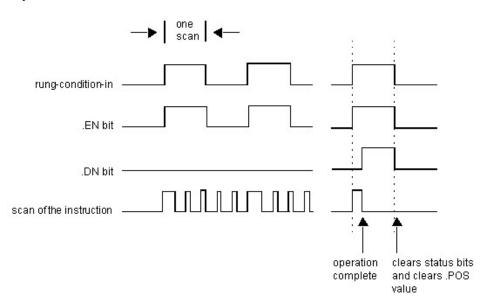
Avoid using the results of a file instruction operating in numerical mode until the .DN bit is set.


The following timing diagram shows the relationship between status bits and instruction operation. When the instruction execution is complete, the .DN bit is set.

If the rung-condition-in is true at completion, the .EN and .DN bit are set until the rung-condition-in goes false. When the rung-condition-in goes false, these bits are cleared and the .POS value is cleared.


If the rung-condition-in is false at completion, the .EN bit is cleared immediately. One scan after the .EN bit is cleared, the .DN bit and the .POS value are cleared.

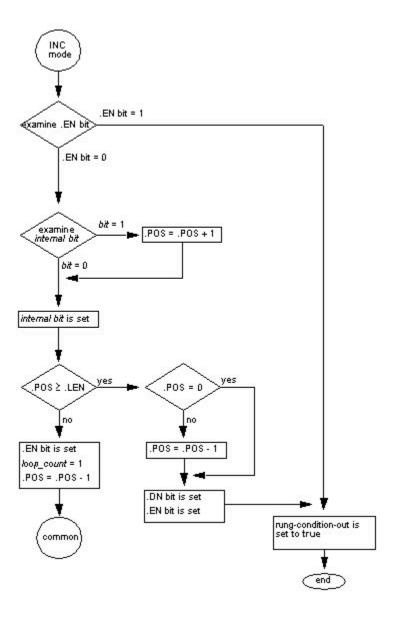
Numeric Mode Flow Chart-FSC


Incremental Mode

Incremental mode manipulates one element of the array each time the instruction's rung-condition-in goes from false to true.

Chapter 8 Array File-Misc Instructions

The following timing diagram shows the relationship between status bits and instruction operation. Execution occurs only in a scan in which the rung-condition-in goes from false to true. Each time this occurs, only one element of the array is manipulated. If the rung-condition-in remains true for more than one scan, the instruction only executes during the first scan



The .EN bit is set when rung-condition-in is true. The .DN bit is set when the last element in the array has been manipulated. When the last element has been manipulated and the rung-condition-in goes false, the .EN bit, the .DN bit, and the .POS value are cleared.

The difference between incremental mode and numerical mode at a rate of one element per scan is:

- Numerical mode with any number of elements per scan requires only one false-to-true transition of the rungcondition-in to start execution. The instruction continues to execute the specified number of elements each scan until completion regardless of the state of the rung-condition-in.
- Incremental mode requires the rung-condition-in to change from false to true to manipulate one element in the array.

Incremental Mode Flow Chart-FSC

Array Tag

When you enter an array tag, make sure to specify the first element of the array to manipulate. Do not use CONTROL.POS to identify the beginning element because the instruction modifies the .POS value as it operates, which could corrupt the result.

Standard Deviation

The standard deviation is calculated according to this formula:

Standard Deviation =
$$\frac{\left(\sum_{i=1}^{N} \left[\langle X_{(start+i)} - AVE \rangle^{2} \right] \right)}{(N-1)}$$

Where:

•

- start = dimension-to-vary subscript of the array operand
- xi = variable element in the array
- N = number of specified elements in the array

$$\frac{\left(\sum_{i=1}^{N} x_{(start+i)}\right)}{N}$$
AVE = N

Array (File)/Shift Instructions

Use the array (file)/shift instructions to modify the location of data within arrays.

Available Instructions

Ladder Diagram

lf you want to:	Use this instruction:
Load bits into, shift bits through, and unload bits from a bit	BSL on page 569
array one bit at a time.	BSR on page 572
Load and unload values in the same order.	FFL on page 576
	FFU on page 582
Load and unload values in reverse order.	LFL on page 588
	LFU on page 594

You can mix data types, but loss of accuracy and rounding error might occur.

The bold data types indicate optimal data types. An instruction executes faster and requires less memory if all the operands of the instruction use the same optimal data type, typically DINT or REAL.

Bit Shift Left (BSL)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The BSL instruction shifts the specified bits within the Array one position left.

When enabled, the instruction unloads the uppermost bit of the specified bits to the .UL bit, shifts the remaining bits one position left, and loads Bit address into bit 0 of Array.

IMPORTANT: You must test and confirm that the instruction does not change data that you do not want it to change.

The BSL instruction operates on contiguous data memory. The data is constrained by the specified member.

In this transitional instruction, the relay ladder toggles the rung-condition-in from false to true for the instruction to execute.

Available Languages

Ladder Diagram

BSL		
Bit Shift Left		-(EN)
Array	?]
Control	?	-(DN)
Source Bit	?	
Length	?	

Operands

Ladder Diagram

Operand	Туре	Format	Description
Array	DINT ARRAY	tag	Array to modify specify the first element where to begin the shift
Control	CONTROL	tag	Control structure for the operation
Source Bit	BOOL	tag	Bit to shift into the vacated position.
Length	DINT	immediate	Number of bits in the array to shift

CONTROL Structure

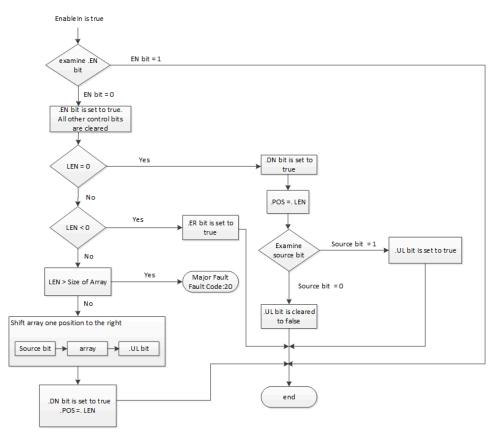
Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the BSL instruction is enabled.
.DN	BOOL	The done bit is set to indicate that bits shifted one position to the left.
.UL	BOOL	The unload bit is the instruction's output. The .UL bit stores the status of the bit that was shifted out of the range of bits.
.ER	BOOL	The error bit is set when .LEN < 0.
.LEN	DINT	The length specifies the number of array bits to shift.

Affects Math Status Flags

No

Major/Minor Faults

A Major Fault Occurs If	Fault Type	Fault Code
The LEN exceeds the size of the array	4	20

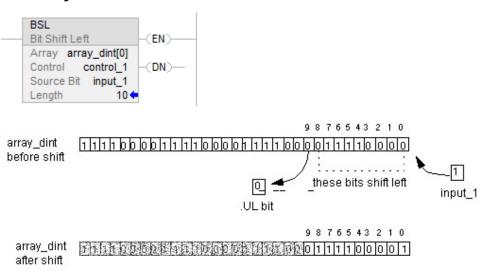

See Common Attributes for General Instructions on page 849 for operand related faults.

Execution

Ladder Diagram

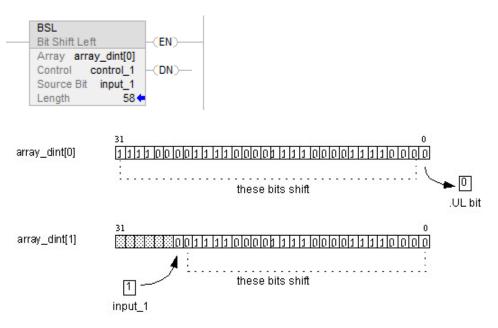
Condition/State	Action Taken
Prescan	The .EN bit is cleared to false.
	The .DN bit is cleared to false.
	The .ER bit is cleared to false.
	The .POS value is cleared
Rung-condition-in is false	The .EN bit is cleared to false.
	The .DN bit is cleared to false.
	The .ER bit is cleared to false.
	The .POS value is cleared.
Rung-condition-in is true	See BSL Flow Chart (True).
Postscan	N/A

BSL Flow Chart (True)



Examples

Example 1


When enabled, the BSL instruction starts at bit 0 in array_dint[0]. The instruction unloads array_dint[0].9 into the .UL bit, shifts the remaining bits, and loads input_1 into array_dint[0].0. The remaining bits (10-31) are invalid.

Ladder Diagram

Example 2:

When enabled, the BSL instruction starts at bit 0 in array_dint[0]. The instruction unloads array_dint[1].25 into the .UL bit, shifts the remaining bits, and loads input_1 into array_dint[0].0. The remaining bits (31-26 in array_dint[1]) are invalid.

Bit Shift Right (BSR)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The BSR instruction shifts the specified bits within the Array one position right. When enabled, the instruction unloads the value at bit 0 of Array to the .UL bit, shifts the remaining bits one position right, and loads the bit from the Bit address.

IMPORTANT: Test and confirm that the instruction changed the correct data. The BSR instruction operates on continuous memory. If an Array is a member array, the instruction may shift beyond the boundary of the array into other members following it. Be sure to carefully select a length that does cause this scenario to occur.

The BSR instruction operates on contiguous data memory.

If the instruction tries to read past the end of an array (the LEN is too big), the instruction sets the .ER bit and generates a major fault.

Available Languages

Ladder Diagram

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Ladder Diagram

Operand	Data Type	Format	Description
Array	DINT ARRAY	tag	Array to modify
			specify the first element to be
			shifted.
Control	CONTROL	tag	Control structure for the
			operation
Source Bit	BOOL	tag	Bit to load into the vacated
			position.

Operand	Data Type	Format	Description
Length	DINT	immediate	Number of bits in the array to
			shift

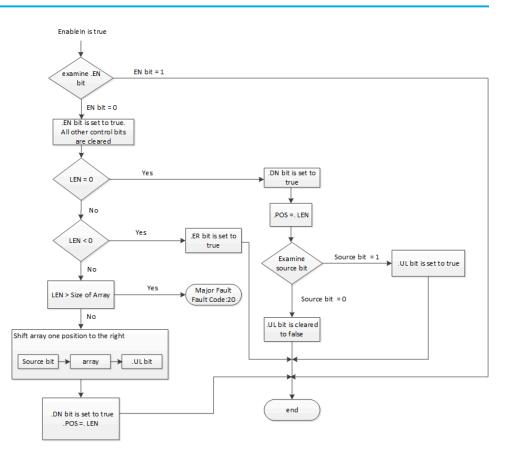
CONTROL Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the BSR
		instruction is enabled.
.DN	BOOL	The done bit is set to indicate that bits
		shifted one position to the right.
.UL	BOOL	The unload bit is the instruction's output.
		The .UL bit stores the status of the bit
		that was shifted out of the range of bits.
.ER	BOOL	The error bit is set when .LEN < 0.
.LEN	DINT	The length specifies the number of array
		bits to shift.

Affects Math Status Flags

No

Major/Minor Faults

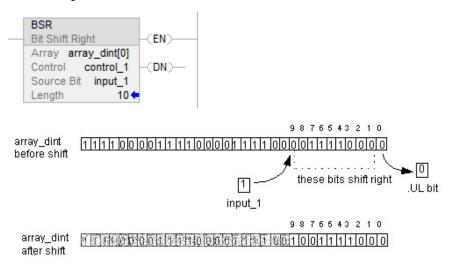

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

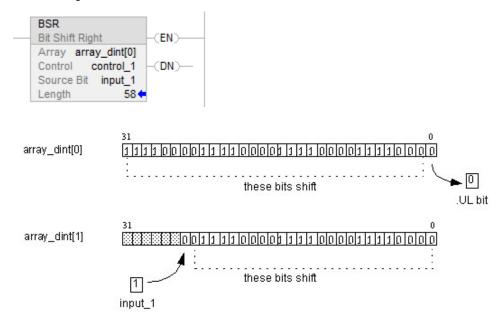
Condition/State	Action Taken	
Prescan	The .EN bit is cleared to false.	
	The .DN bit is cleared to false.	
	The .ER bit is cleared to false.	
	The .POS value is cleared.	
Rung-condition-in is false	The .EN bit is cleared to false.	
	The .DN bit is cleared to false.	
	The .ER bit is cleared to false.	
	The .POS value is cleared.	
Rung-condition-in is true	See the following BSR Flow Chart (True)	
Postscan	N/A	

BSR Flow Chart (True)



Example 1

When enabled, the BSR instruction copies array_dint[0].0 to the .UL bit, shifts 0-9 to the right, and loads the input_1 into array_dint[0].9. The remaining bits (10-31) are invalid, which indicates the bits may not be modified.


Ladder Diagram

Example 2

When enabled, the BSR instruction copies array_dint[0].0 to the .UL bit, shifts 0-9 to the right, and loads the input_1 into array_dint[1].25.. The remaining bits (31-26 in dint_array[1]) are invalid, which indicates that the bits may not be modified. Note how array_dint[1].0 shifts across words into array_dint[0].31.

Ladder Diagram

FIFO Load (FFL)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The FFL instruction copies the Source value to the FIFO.

Use the FFL instruction with the FFU instruction to store and retrieve data in a first-in/first-out order. When used in pairs, the FFL and FFU instructions establish an asynchronous shift register.

Typically, the Source and the FIFO are the same data type.

When enabled, the FFL instruction loads the Source value into the position in the FIFO identified by the .POS value. The instruction loads one value each time the instruction is enabled, until the FIFO is full.

IMPORTANT: You must test and confirm that the instruction does not change data that you don't want it to change.

The FFL instruction operates on contiguous memory.

The data is constrained by the specified member.

If the instruction tries to read past the end of an array, the instruction generates a major fault.

Typically, the Source and the FIFO are the same data type. If Source and FIFO data types mismatch, the instruction converts the Source value to the data type of the FIFO tag.

A smaller integer converts to a larger integer by sign-extension.

Available Languages

Ladder Diagram

	FFL		
_	FIFO Load		-(EN)
	Source	?	
	FIFO	?	-(DN)
	Control	?	
	Length	?	-(EM)
	Position	?	

Operands

Conversion only occurs if the type of the source operand does not match the type of the FIFO.

Operand	Туре	Format	Description
Source	SINT	immediate	Data to be stored in the FIFO
	INT	tag	
	DINT		
	REAL		
	String type		
	structure		
FIFO	SINT	array tag	FIFO to modify
	INT		Specify the first element of the
	DINT		FIFO
	REAL		
	String type		
	structure		
Control	CONTROL	tag	Control structure for the
			operation
			Typically use the same
			CONTROL as the associated
			FFU
Length	DINT	immediate	Maximum number of elements
			the FIFO can hold at one time
Position	DINT	immediate	Next location in the FIFO where
			the instruction loads data

Operand	Туре	Format	Description
			initial value is typically 0

CONTROL Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the FFL instruction is enabled.
.DN	BOOL	The done bit is set to indicate that the FIFO is full. The .DN bit inhibits loading the FIFO until .POS < .LEN.
.EM	BOOL	The empty bit indicates the FIFO is empty. If .LEN is < or = to 0 or .POS < 0, the .EM bit and .DN bits are set.
.LEN	DINT	The length word specifies the maximum number of elements in the FIFO.
.POS	DINT	The position word identifies the location in the FIFO where the instruction loads the next value.

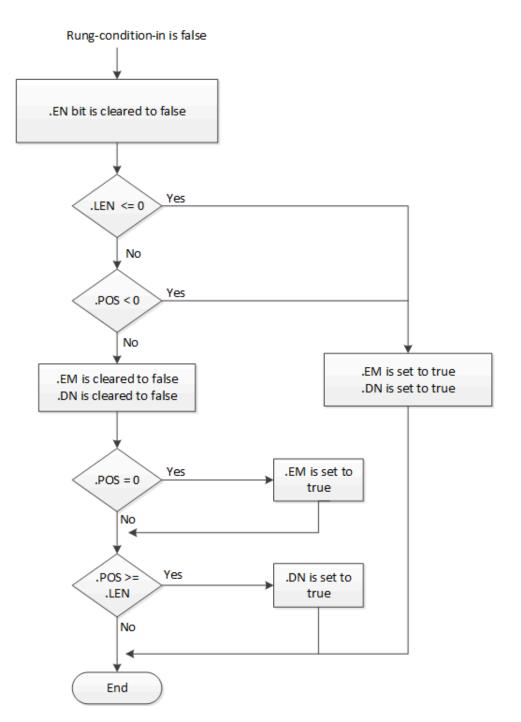
Affects Math Status Flags

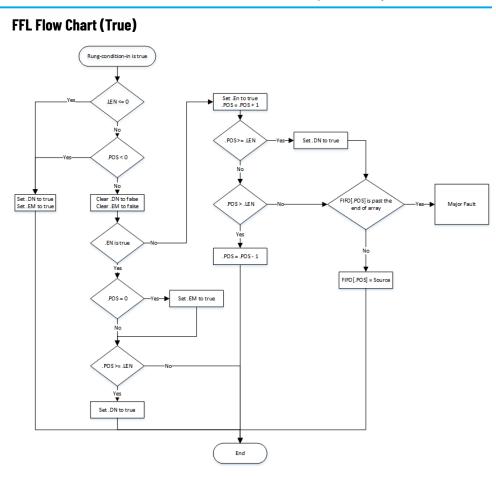
No

Major/Minor Faults

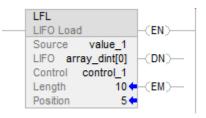
A major fault will occur if:	Fault Type	Fault Code
The (starting element + .POS) is past the	4	20
end of FIFO array		

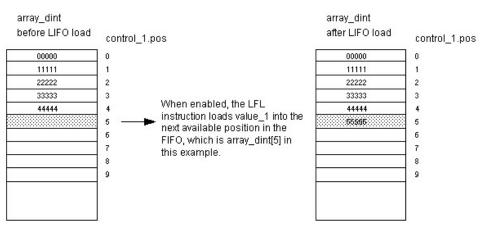
See Common Attributes for General Instructions on page 849 for operand-related faults.

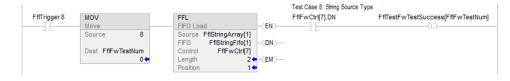

Execution


Condition/State	Action Taken	
Prescan	See the FFL Flow Chart (Prescan).	
Rung-condition-in is false	See FFL Flow Chart (False)	
Rung-condition-in is true	See FFL Flow Chart (True)	
Postscan	N/A	

FFL Flow Chart (Prescan)




FFL Flow Chart (False)


Examples

Source array is STRING array or Structure array.

Ladder Diagram

Example 3

Data type of source mismatch data type of FIFO array.

Ladder Diagram

				Test Case 13:Source is INT, des	stination is SINT
FflTrigger.10	MOV	FFL		FfFwCtr(9].DN	FfTestFwTestSuccess[FfIFwTestNum]
	Move	FIFO Load	-(EN)		(L)
	Source 10	Source FflintArray[1]			
		FIFO FflSintFifo[1]	-(DN)		
	Dest FfFwTestNum	Control FflFwCtrl[12]			
	0 💠	Length 1	←(EM)—		
		Position 0	+		

FIFO Unload (FFU)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The FFU instruction unloads the value from position 0 (first position) of the FIFO and stores that value in the Destination. The remaining data in the FIFO shifts down one position.

Use the FFU instruction with the FFL instruction to store and retrieve data in a first-in/first-out order.

When enabled, the FFU instruction unloads data from the first element of the FIFO and places that value in the Destination. The instruction unloads one value each time the instruction is enabled, until the FIFO is empty. If the FIFO is empty, the FFU returns 0 to the Destination.

Typically, the destination and the FIFO are the same data type. If the types differ, the instruction converts the unloaded value to the type of the destination tag.

A smaller integer converts to a larger integer by sign-extension.

Available Languages

Ladder Diagram

Operands

There are data conversion rules for mixed data types within an instruction.

Ladder Diagram

Operand	Туре	Format	Description
FIFO	SINT	array tag	FIFO to modify
	INT		Specify the first element of the
	DINT		FIFO
	REAL		Do Not use CONTROL.POS in
	String type		the subscript
	structure		
Destination	SINT	tag	Value unloaded from the FIFO.
	INT		
	DINT		
	REAL		
	String type		
	structure		
Control	CONTROL	tag	Control structure for the
			operation
			typically use the same
			CONTROL as the associated
			FFL
Length	DINT	immediate	Maximum number of elements
			the FIFO can hold at one time
Position	DINT	immediate	Next location in the FIFO where
			the instruction loads data
			initial value is typically O

CONTROL Structure

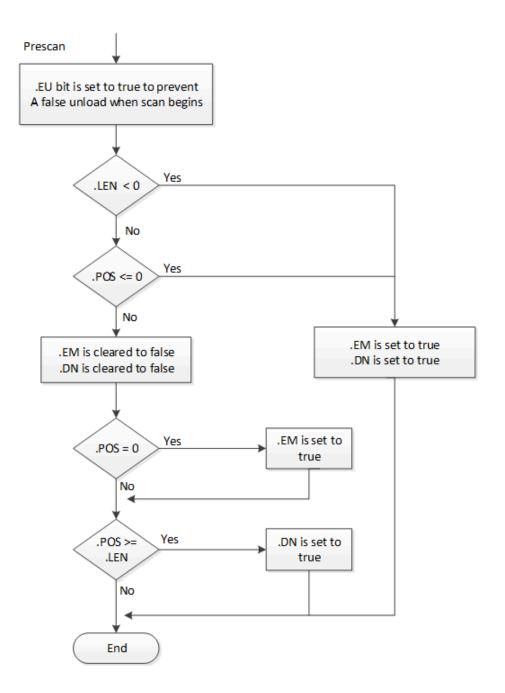
Mnemonic	Data Type	Description
.EU	BOOL	The enable unload bit indicates the FFU
		instruction is enabled. The .EU bit is set to
		prevent a false unload when the prescan
		begins.

Mnemonic	Data Type	Description
.DN	BOOL	The done bit is set to indicate that the FIFO is full (.POS = .LEN).
.EM	BOOL	The empty bit indicates the FIFO is empty. If .LEN is , or = to 0 or .POS < 0, the .EM bit and .DN bits are set.
.LEN	DINT	The length specifies the maximum number of elements in the FIFO.
.POS	DINT	The position identifies the end of the data that has been loaded into the FIFO.

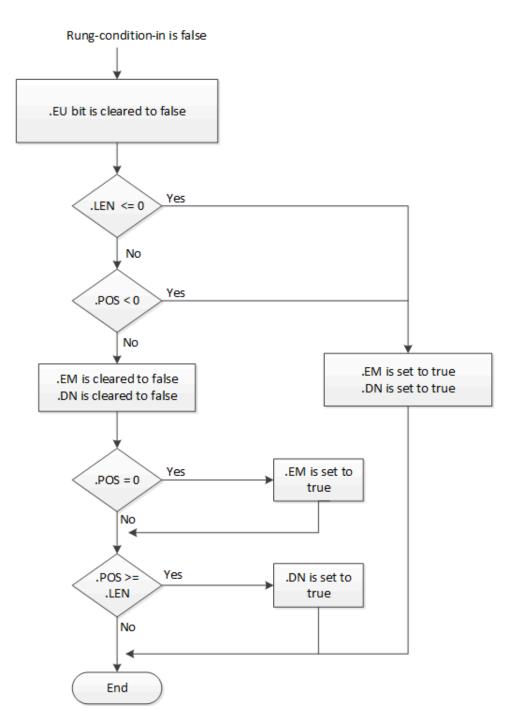
Affects Math Status Flags

No

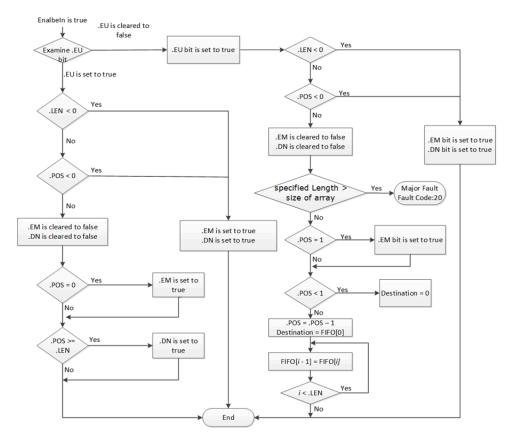
Major/Minor Faults


A major fault will occur if:	Fault Type	Fault Code
The specified Length is past the end of	4	20
FIFO array		

See Common Attributes for General Instructions on page 849 for operand-related faults.


Execution

Condition / State	Action Taken
Prescan	See FFU Flow Chart (Prescan).
Rung-condition-in is false	See FFL Flow Chart (False).
Rung-condition-in is true	See FFU Flow Chart (True)
Postscan	N/A


FFU Flow Chart (Prescan)

FFL Flow Chart (False)

FFU Flow Chart (True)

Examples

Example 1

Ladder Diagram

FFU
 FIFO Unload (EU)
FIFO array_dint[0]
Dest value_2 (DN)-
Control control_1
Length 10 (EM)-
Position 6+

array_dint

fter FIFO unload
31113 22222 33333 44444 56565

array_dint

Rockwell Automation, Inc.

control_1.pos

0 1

2

3

4

5 6

7

8

9

Destination array is STRING array or Structure array

Ladder Diagram

Test Case 8: String destination Type			
FfuTrigger.8	MOV	FFU FfuTestFwTestSuccess[FfuFwT	[estNum]
	Move	FIFO Unload (EU)	
	Source 8		
		Dest FfuStringArray[1] -(DN)	
	Dest FfuFwTestNum		
	0 🗧		
		Position 24	

Example 3

Data type of FIFO source array mismatch data type of destination array

Ladder Diagram

			Test Case 10: Source is SINT FIFO, o	destination is INT
FfuTrigger.10	MOV	FFU	F fuF w Ctrl [9].EM	FfuTestFwTestSuccess[FfuFwTestNum]
	Move	FIFO Unload	-(EU)	(L)
	Source 10	FIFO FfuSintFifo[1]		
		Dest FfulntArray[2]	-(DN)	
	Dest FfuFwTestNum	Control FfuFwCtrl[9]		
	0 🔶		-(EM)	
		Position 1	•	
	FfuTrigger.10	Source 10 Dest FfuFwTestNum	Move FIFO Unload Source 10 FIFO FNSinFifo[1] Dest FfuFNtestNum Control FfuFWtetf[9]	FfuTrigger.10 MOV FFU FfuFwCtr[9].EM Move FIFO Unload -(EU) -(EU) Source 10 FIFO FfuShtFf0[1] -(EU) Dest FfuFwTesNum Control FfuFwtr[9] -(DN) Length 1 ← (EM) -(EU) -(EU)

LIFO Load (LFL)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The LFL instruction copies the Source value to the LIFO.

Use the LFL instruction with the LFU instruction to store and retrieve data in a last-in/first-out order. When used in pairs, the LFL and LFU instructions establish an asynchronous shift register.

Typically, the Source and the LIFO are the same data type.


When enabled, the LFL instruction loads the Source value into the position in the LIFO identified by the .POS value. The instruction loads one value each time the instruction is enabled, until the LIFO is full.

IMPORTANT: You must test and confirm that the instruction does not change data that you don't want it to change.

The LFL instruction operates on contiguous data memory.

Available Languages

Ladder Diagram

Operands

There are data conversion rules for mixed data types within an instruction.

Ladder Diagram

Operand	Туре	Format	Description
Source	SINT	immediate	Data to be stored in the LIFO.
	INT	tag	
	DINT		
	REAL		
	String type		
	structure		
LIFO	SINT	array tag	LIFO to modify
	INT		Specify the first element of the
	DINT		LIFO
	REAL		
	String type		
	structure		
Control	CONTROL	tag	Control structure for the
			operation
			Typically use the same
			CONTROL as the associated
			LFU
Length	DINT	immediate	Maximum number of elements
			the LIFO can hold at one time
Position	DINT	immediate	Next location in the LIFO where
			the instruction loads data
			Initial value is typically O

CONTROL Structure

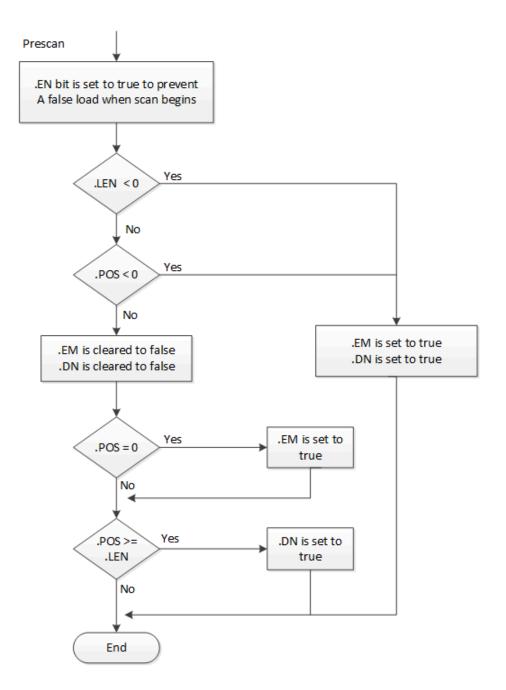
Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the LFL
		instruction is enabled.

Mnemonic	Data Type	Description
.DN	BOOL	The done bit is set to indicate that the LIFO is full (.POS = .LEN). The .DN bit inhibits loading the LIFO until .POS < .LEN.
.EM	BOOL	The empty bit indicates the LIFO is empty. If .LEN < or = to 0 or .POS < 0, the .EM bit and .DN bits are set.
.LEN	DINT	The length specifies the maximum number of elements the LIFO can hold at one time.
.POS	DINT	The position identifies the location in the LIFO where the instruction will load the next value.

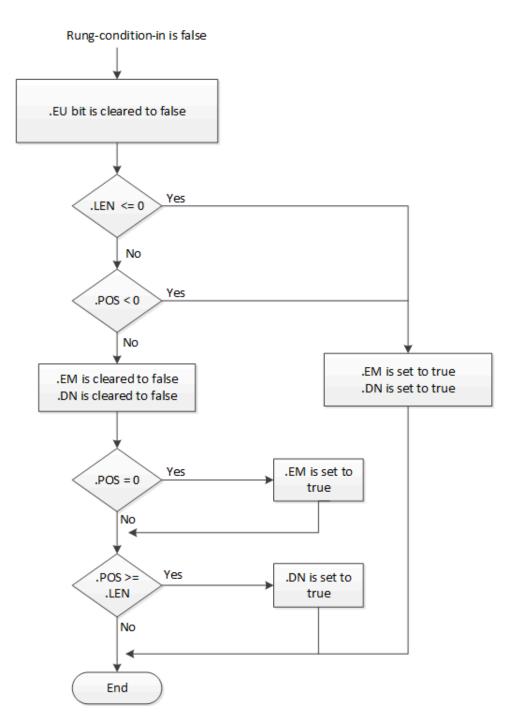
Affects Math Status Flags

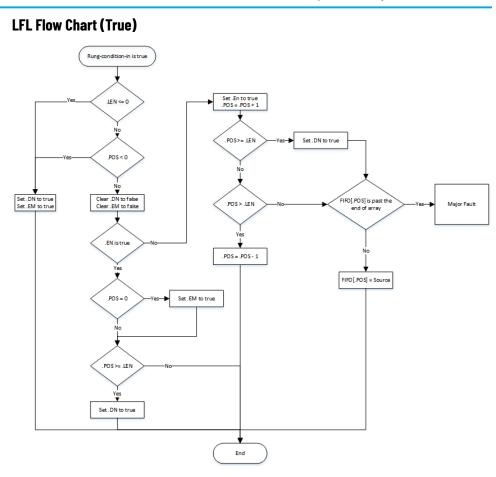
No

Major/Minor Faults

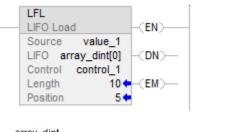

A major fault will occur if:	Fault Type	Fault Code
If (starting element + .POS) is past the end	4	20
of LIFO array		

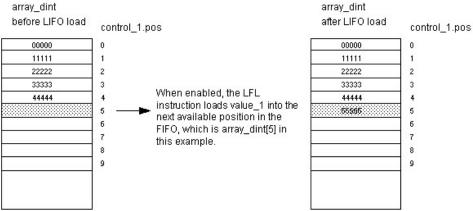
See Common Attributes for General Instructions on page 849 for operand-related faults.


Execution


Condition/State	Action Taken	
Prescan	See LFL Flow Chart (Prescan)	
Rung-condition-in is false	See LFL Flow Chart (False)	
Rung-condition-in is true	See LFL Flow Chart (True)	
Postscan	N/A.	

LFL Flow Chart (Prescan)




LFL Flow Chart (False)

Example 1

Source array is STRING array or Structure array.

Ladder Diagram

			Test Case 8: String Source Type	
LfTrigger.8	MOV	LFL	LfIFwCtrl[7].DN	LflTestFwTestSuccess[LflFwTestNum]
	Move	LIFO Load	-(EN)	(L)
	Source 8			
		LIFO LflStringLifo[1]		
	Dest LflFwTestNum			
	0 🖛	Length 2	-(EM)	
		Position 1		
	LffTrigger.8	Source 8 Dest LflFwTestNum	Move LIFO Load Source 8 LIFO Lad LIFO Lad Dest LIFWTestNum Off LIFWCHT	LfTrigger.8 MOV LFD Load Source 8 Source LfIStringArray[1] LFO LfIStringLfo[1] -(DN)- Control LfIFwCtrl[7].DN Dest LfIFwTestNum 0 Length 2 4-(EM)-

Example 3

Data type of source mismatch data type of LIFO array.

Ladder Diagram

				Test Case 12: Source is SINT, destination is INT	
LfTrigger.10	MOV	LFL		LfIFwCtrl[11].DN	LfITestFwTestSuccess[LfIFwTestNum]
[Move	LIFO Load	-(EN)] [(L)
	Source 10	Source LflSintArray[1]			
		LIFO LflintLifo[1]	-(DN)		
	Dest LflFwTestNum	Control LflFwCtrl[11]			
	0 🖛	Length 3	-(EM)		
		Position 2			

LIFO Unload (LFU)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The LFU instruction unloads the value at .POS of the LIFO and stores 0 in that location.

Use the LFU instruction with the LFL instruction to store and retrieve data in a last-in/first-out order.

When enabled, the LFU instruction unloads the value at .POS of the LIFO and places that value in the Destination. The instruction unloads one value and replaces it with 0 each time the instruction is enabled, until the LIFO is empty. If the LIFO is empty, the LFU returns 0 to the Destination.

IMPORTANT: You must test and confirm that the instruction does not change data that you don't want it to change.

The LFU instruction operates on contiguous memory. The scope of the instruction is constrained by the base tag. The LFL instruction will not write data outside of the base tag but can cross member boundaries. If you specify an array that is a member of a structure, and the length exceeds the size of that array you must test and confirm that the LFL instruction does not change data you do not want changed.

The data is constrained by the specified member.

If the instruction tries to read past the end of an array, the instruction sets the .ER bit and generates a major fault.

Typically, the Source and the LIFO are the same data type. If Source and LIFO data types mismatch, the instruction converts the Source value to the data type of the FIFO tag.

A smaller integer converts to a larger integer by sign-extension.

Available Languages

Ladder Diagram

	LFU		
_	LIFO Unload		-(EU)
	LIFO	?	
	Dest	?	-(DN)
	Control	?	
	Length	?	-(EM)
	Position	?	

Operands

There are data conversion rules for mixed data types within an instruction.

Operand	Туре	Format	Description
LIFO	SINT	array tag	LIFO to modify
	INT		Specify the first element of the
	DINT		LIFO
	REAL		Not use CONTROL.POS in the
	String type		subscript
	structure		
Destination	SINT	tag	Value unloaded from the LIFO.
	INT		
	DINT		
	REAL		
	String type		
	structure		
Control	CONTROL	tag	Control structure for the
			operation
			Typically use the same
			CONTROL as the associated
			LFL.
Length	DINT	immediate	Maximum number of elements
			the LIFO can hold at one time
Position	DINT	immediate	Next location in the LIFO where
			the instruction unloads data

Operand	Туре	Format	Description
			Initial value is typically O

CONTROL Structure

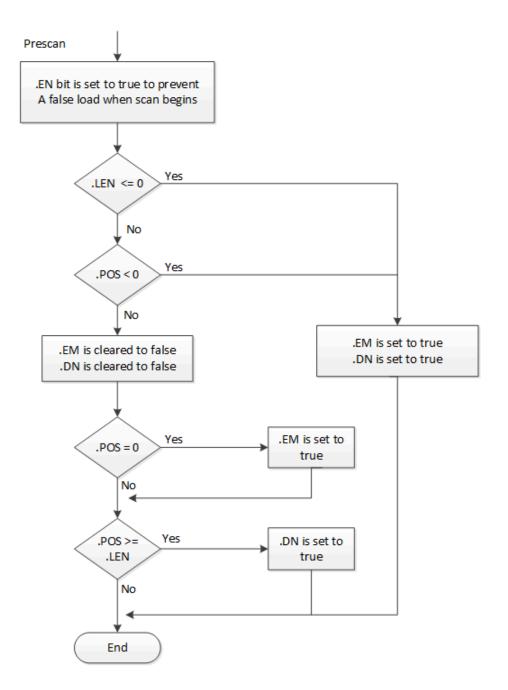
Mnemonic	Data Type	Description
.EU	BOOL	The enable bit indicates the LFU
		instruction is enabled.
.DN	BOOL	The done bit is set to indicate that the
		LIFO is full (.POS = .LEN).
.EM	BOOL	The empty bit indicates the LIFO is
		empty. If .LEN < or = to 0 or .POS < 0, both
		the .EM bit and .DN bit are set.
.LEN	DINT	The length specifies the maximum
		number of elements the LIFO can hold at
		one time.
.POS	DINT	The position identifies the end of the data
		that has been loaded into the LIFO.

Affects Math Status Flags

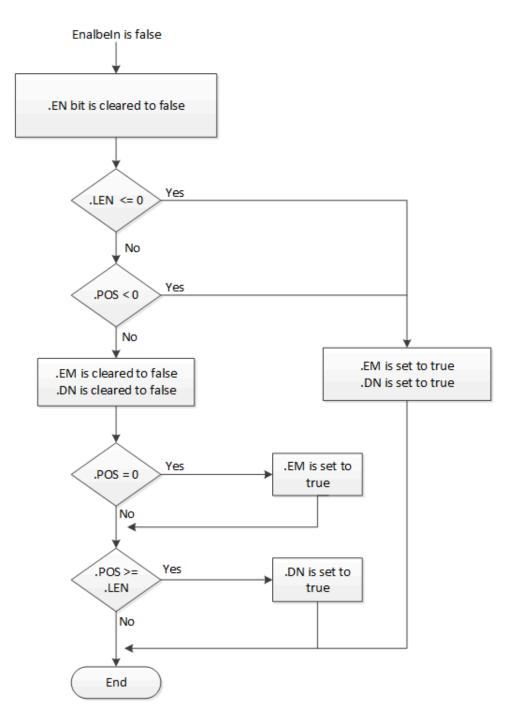
No

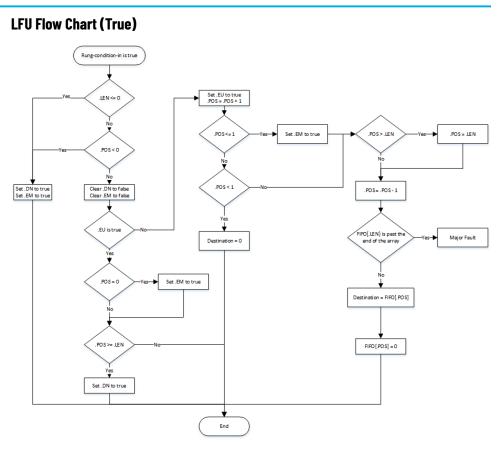
Major/Minor Faults

A major fault will occur if:	Fault Type	Fault Code
If the specified Length is past the end of	4	20
LIFO array		

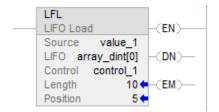

See Common Attributes for General Instructions on page 849 for operand-related faults.

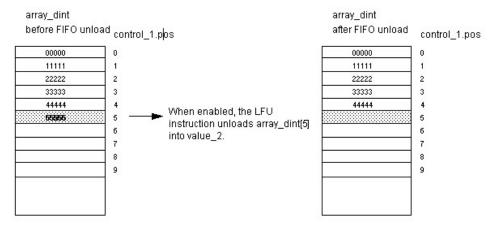
Execution

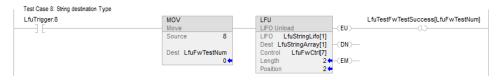

All conditions occur only during Normal Scan mode


Condition/State	Action Taken	
Prescan	See LFU Flow Chart (Prescan)	
Rung-condition-in is false	See LFU Flow Chart (False)	
Rung-condition-in is true	See LFU Flow Chart (True)	
Postscan	N/A	

LFU Flow Chart (Prescan)




LFU Flow Chart (False)


Example 1

Destination array is STRING array or Structure array

Ladder Diagram

Example 3

Data type of LIFO source array mismatch data type of destination array

Ladder Diagram

			Test Gase TU, dource is blight Li	IFO, desination is in i
LfuTrigger.10	MOV	LFU	LfuFwCtrl[9].EM	LfuTestFwTestSuccess[LfuFwTestNum]
	Move	LIFO Unload	-(EU)	(L)
and the	Source 10	LIFO LfuSintLifo[1]		
		Dest LfulntArray[2]	-(DN)	
	Dest LfuFwTestNum	Control LfuFwCtrl[9]		
	0 🗲	Length 14	-(EM)	
		Position 14		
	LfuTrigger.10	Source 10 Dest LfuFwTestNum	Hove LFO Unload Source 10 LFO LtuSintLife[1] Dest LfuFwTestNum O Length 1	LfuTrigger.10 MOV LFU LfuFwCtr[9].EM Move LFO Unload - <eu< td=""> -<eu< td=""> Source 10 LFO LfuSintLifo[1] -<eu< td=""> Dest LfuFwTestNum Control LfuFwCtr[9] -<eu< td=""> 0 Lept LfuFwTestNum -- --</eu<></eu<></eu<></eu<>

Sequencer Instructions

Sequencer instructions monitor consistent and repeatable operations.

Available Instructions

Ladder Diagram

lf you want to	Use this instruction
Detect when a step is complete.	SQI on page 601
Set output conditions for the next step.	SQO on page 608
Load reference conditions into sequencer arrays	SQL on page 604

The **bold** data types indicate optimal data types. An instruction executes faster and requires less memory if all the operands of the instruction use the same optimal data type, typically DINT or REAL.

Sequencer Input (SQI)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The SQI instruction detects when a step is complete in a sequence pair of SQO/SQI instructions.

When true, the SQI instruction passes the Source and current Array element through the Mask. The results of these masking operations are compared and if they are equal, rung-condition-out is set to true, otherwise rung-condition-out is cleared to false. Typically use the same CONTROL structure as the SQO and SQL instructions.

Available Languages

Ladder Diagram

SQI	
Sequence	er Input
Array	Array
Mask	Mask
Source	Source
Control	SqiControl
Length	3 🕈
Position	10 🗲

Operands

The data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Operand	Туре	Format	Description
Array	DINT	array tag	Sequencer array
			Specify the first element of the
			sequencer array

Chapter 10 Sequencer Instructions

Operand	Туре	Format	Description
			do not use CONTROL.POS in the
			subscript
Mask	SINT	tag	This operand is used to
	INT	immediate	determine which bits to block
	DINT		(0) or pass (1) when applied
			to the Source and the Array
			element referenced by .POS.
			INT and SINT types are zero
			extended to the size of a DINT
			type.
Source	SINT	tag	The input data used to
	INT	immediate	compare with an array
	DINT		element referenced by .POS
Control	CONTROL	tag	Control structure for the
			operation
			The same control tag should
			be used in the SQO and SQL
			instructions
Length	DINT	immediate	This represents the CONTROL
			structure .LEN.
Position	DINT	immediate	This represents the CONTROL
			structure .POS.

CONTROL Structure

Mnemonic	Data Type	Description
.ER (Error)	BOOL	The instruction encountered an error.
.LEN (Length)	DINT	The length specifies the number of sequencer steps in the sequencer array
.POS (Position)	DINT	The position identifies the Array element that the instruction is currently comparing with the Source. The initial value is typically 0

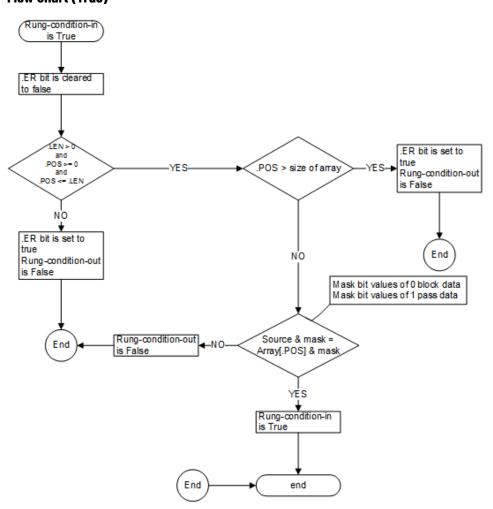
Using SQI without SQO

When the SQI instruction determines a step is complete, the ADD instruction increments the sequencer array.

The GRT determines whether another value is available to check in the sequencer array. The MOV instruction resets the position value after completely stepping through the sequencer array one time.

SQI	ADD
Sequencer Input	Add
Array array_1[0]	Source A control_1.POS
Mask 16#0000f0ff	0 🖛
Source value_1	Source B 1
Control control_1	
Length 10 🖛	Dest control_1.POS
Position 0 🖛	0 🖛
GRT Greater Than (A>B)	MOV
Source A control 1.POS	Source 1
0	
Source B control 1.LEN	Dest control_1.POS
10 🖛	- 0.4

Affects Math Status Flags


No

Major/Minor Faults

None specific to this instruction. See Common Attributes for General Instructions on page 849 for operand-related faults.

Execution

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	N/A	
Rung-condition-in is true	See Flow Chart (True)	
Postscan	N/A	

Ladder Diagram

S	QI	
- S	equend	er Input
A	rray	Array
N	lask	Mask
S	ource	Source
C	ontrol	SgiControl
L	ength	34
P	osition	10 🗲

If you use the SQI instruction without a paired SQO instruction, you have to externally increment the sequencer array.

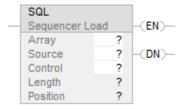
The rung-condition-in will be set to true when the instructions enableOut will be true when the result of ANDing the array value specified by the Position e.g. Array[Position] with the Mask value is equal to the result of ANDing the Source value with the Mask value, otherwise the rung-condition-out will be cleared to false.

Sequencer Load (SQL)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The SQL instruction loads the source operand value into the sequencer array.

When .EN transitions from false to true, the .POS is incremented. The .POS is reset to 1 when the .POS becomes > or = to .LEN. The SQL instruction loads the Source value into the Array at the new position.


When .EN is true the SQL instruction loads the Source value into the Array at the current position.

Typically use the same CONTROL structure as the SQI and SQO instructions.

IMPORTANT: You must test and confirm that the instruction does create unwanted changes.

Available Languages

Ladder Diagram

Operands

The data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

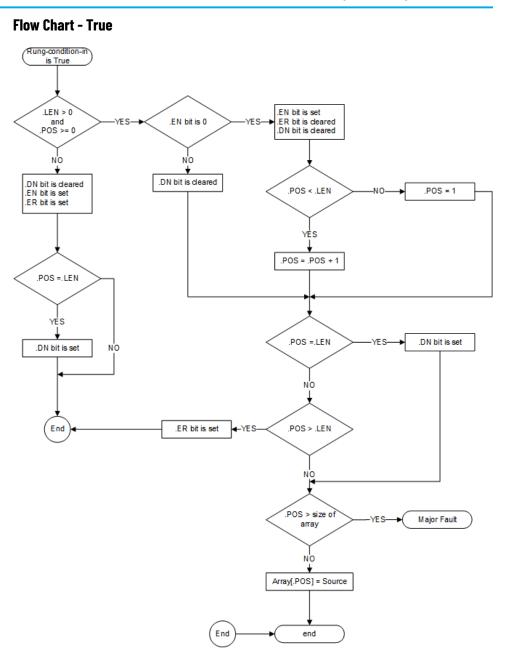
Operand	Туре	Format	Description
Array	DINT	array tag	Sequencer array Specify the first element of the sequencer array do not use CONTROL.POS in the subscript
Source	SINT INT DINT	tag immediate	Data to load into the sequencer array at a location specified by .POS.
Control	CONTROL	tag	Control structure for the operation The same control tag should be used in the SQI and SQO instructions
Length	DINT	immediate	This represents the CONTROL structure .LEN.

Position	DINT	immediate	This represents the CONTROL
			structure .POS.

CONTROL Structure

Mnemonic	Data Type	Description
.EN (Enable)	BOOL	The enable bit indicates the SQL instruction is enabled.
.DN (Done)	BOOL	The done bit is set when all the specified elements have been loaded into Array.
.ER (Error)	BOOL	The error bit is set when .LEN < or = to 0, .POS < 0, or .POS > .LEN.
.LEN (Length)	DINT	The length specifies the number of sequencer steps in the sequencer array.
.POS (Position)	DINT	The position identifies where in the Array the Source value will be stored.

Affects Math Status Flags


No

Major/Minor Faults

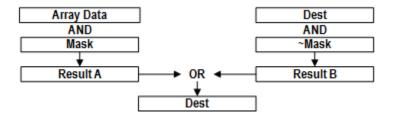
A major fault will occur if:	Fault Type	Fault Code
position > size of Array	4	20

Execution

Condition/State	Action Taken	
Prescan	The .EN is set to true.	
Rung-condition-in is false	The .EN is cleared to false	
Rung-condition-in is true	See Flow Chart (True)	
Postscan	N/A	

SQI		
 Sequence	er Input	_
Array	Array	
Mask	Mask	
Source	Source	
Control	SqiControl	
Length	3 🗢	
Position	10 🗲	

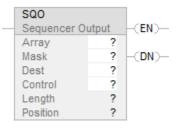
When enabled, the SQL instruction loads value_3 into the next position in the sequencer array, which is array_dint[5] in this example.


Sequencer Output (SQO)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The SQO instruction sets output conditions for the next step of a sequence pair of SQO/SQI instructions.

When .EN transitions from false to true, the .POS is incremented. The .POS is reset to 1 when the .POS becomes greater than or equal to .LEN


When .EN is true the SQO instruction moves the Array data at the .POS through the Mask and then moves the current Destination value through the complemented Mask. The results of those operations are ORed together and the result is stored in the Destination.

Typically, you should use the same CONTROL structure as the SQI on page 601 and SQL on page 604 instructions.

Available Languages

Ladder Diagram

Operands

The data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Operand	Туре	Format	Description
Array	DINT	array tag	Sequencer array
			Specify the first element of the
			sequencer array
			do not use CONTROL.POS in the
			subscript
Mask	SINT	tag	Used to determine which bits
	INT	immediate	to block (0) or pass (1) and
	DINT		applied during the output
			masking operation.

Operand	Туре	Format	Description
Destination	DINT	tag	Output data from the
			sequencer array. This value
			is used in the output masking
			operation.
Control	CONTROL	tag	Control structure for the
			operation
			The same control tag should
			be used in the SQI and SQL
			instructions
Length	DINT	immediate	Number of elements in the
			Array (sequencer table) to the
			output
Position	DINT	immediate	Current position in the array
			Initial value is typically 0.

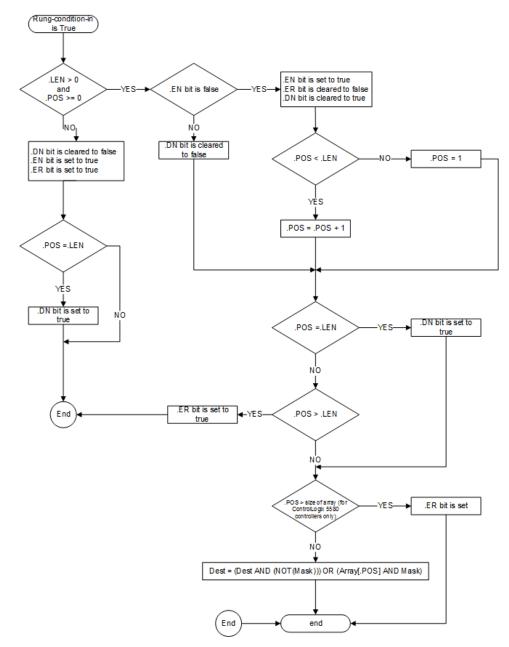
CONTROL Structure

Mnemonic	Data Type	Description
.EN (Enable)	BOOL	The enable bit indicates the SQO instruction is enabled.
.DN (Done)	BOOL	The done bit is set when .POS = .LEN
.ER (Error)	BOOL	Indicates the instruction encountered an error.
.LEN (Length)	DINT	The length specifies the number of sequencer steps in the sequencer array.
.POS (Position)	DINT	The position identifies the Array element that the instruction is currently using in the output masking operation.

Affects Math Status Flags

No

Major/Minor Faults


None specific to this instruction. See Common Attributes for General Instructions on page 849 for operand-related faults.

Execution

Condition/State	Action Taken
Prescan	The .EN is set to true.

Condition/State	Action Taken
Rung-condition-in is false	The .EN is cleared to false
Rung-condition-in is true	See the following Flow Chart (True)
Postscan	N/A

Flow Chart (True)

Example

The Mask value is AND'd with the array value e.g. Array[SqoControl.POS]. The complement of the Mask value is AND'd with the current Dest value. The results of these two operations are then OR'd together and the result is stored to the Dest.

To reset .POS to the initial value (.POS = 0), us'e a RES instruction to clear the control structure. This example uses the status of the first-scan bit to clear the .POS value.

S:FS	control_1
	(DEC)
	(RES)

SQO		
 Sequen	cer Output	-(EN)
Array	Array	
Mask	Mask	-(DN)
Dest	Dest	
Control	SqoControl	
Length	10 🗲	
Position	4 🗲	

Program Control Instructions

Use the program control instructions to change the flow of logic.

Available Instructions

Ladder Diagram

JMP on page	LBL on page	JSR on page	JXR on page	SBR on page	RET on page	TND on page	MCR on page
620	620	622	616	622	622	639	630

UID on page	UIE on page	SFR on page	SFP on page	EVENT on	AFI on page	EOT on page	NOP on page
644	644	637	635	page 640	614	615	633

Function Block

JSR on page 622	RET on page 622	SBR on page 622

Structured Text

JSR on page	RET on page	SBR on page	TND on page	EVENT on	UID on page	EOT on page	SFR on page
622	622	622	639	page 640	644	615	637

NOTE: SFP on page 635

If you want to:	Use this instruction:
Jump over a section of logic that does not always need to be	JMP
executed.	LBL
Jump to a separate routine, pass data to the routine, execute	JSR
the routine, and return results.	SBR
	RET
Jump to an external routine	JXR
Mark a temporary end that halts routine execution.	TND
Disable all the rungs in a section of logic	MCR
Disable user tasks.	UID
Enable user tasks.	UIE
Pause a sequential function chart	SFP
Reset a sequential function chart	SFR
End a transition for a sequential function chart	ЕОТ
Trigger the execution of an event task	EVENT
Disable a rung	AFI
Insert a placeholder in the logic.	NOP

Always False (AFI)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The AFI instruction sets the EnableOut to false.

Available Languages

Ladder Diagram

- AFI ----

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

Ladder Diagram

None

Description

The AFI instruction sets its EnableOut to false.

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Common Attributes on page 849 for operand-related faults

Execution

All conditions below the thick solid line can only occur during Normal Scan mode.

Condition	Action
Prescan	N/A
Rung-condition-in is false	Clear EnableOut to false.
Rung-condition-in is true	Clear EnableOut to false.
Postscan	N/A

Examples

Ladder Diagram

Use the AFI instruction to temporarily disable a rung while you are debugging a program. AFI disables all the instructions on this rung.

End of Transition (EOT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The EOT instruction is used to set the state of a transition. It typically occurs in a subroutine called from a transition (JSR). The state bit parameter used in EOT determines the state of the Transition. If the state bit is set to true, the SFC transitions to next state else EOT acts as NOP.

Available Languages

Ladder Diagram

EOT		
 End Of Tr	ansition	⊢
State Bit	StateBit	

Function Block

This instruction is not available in function block.

Structured Text

EOT(StateBit);

Operands

Ladder Diagram

Operand	Туре	Format	Description
State Bit	BOOL	tag	state of the transition
			(0=executing, 1=completed)

Structured Text

Operand	Туре	Format	Description
State Bit	BOOL	tag state of the tra	
			(0=executing, 1=completed)

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Description

Because the EOT instruction returns a boolean state, multiple SFC routines can share the same routine that contains the EOT instruction. If the calling routine is not a transition, the EOT instruction acts as a NOP instruction.

In a Logix controller, the return parameter returns the transition state, since rung condition is not available in all Logix programming languages.

Affects Math Status Flags

No

Fault Conditions

None specific to this instruction. See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction returns the data bit value to the calling routine.
Postscan	N/A

Structured Text

Condition/State	Action Taken
Prescan	N/A
Normal execution	The instruction returns the data bit value to the calling routine.
Postscan	N/A

Example

Jump to External Routine (JXR)

This information applies to the SoftLogix 5800 controller only.

The JXR instruction executes an external routine.

Available Languages

Ladder Diagram

JXR		
Jump To External Routine		-(EN)
External routine name	?	-(DN)
External routine control	?	-(ER)
Parameter	?	
Return Par	?	

Function Block

This instruction is not available for function block.

Structured Text

This instruction is not available for structured text.

Operands

Ladder Diagram

Operand	Туре	Format	Description
External routine name	ROUTINE	Name	External routine to execute
External routine control	EXT_ROUTINE_CONTROL	Tag	Control structure
Parameter	BOOL	Immediate	Data from this routine that you
	SINT	Tag	want to copy to a variable in
	INT	Array tag	the external routine
	DINT		Parameters are optional.
	REAL		Enter multiple parameters, if
	structure		needed.
			You can have as many as 10
			parameters.
Return parameter	BOOL	Tag	Tag in this routine to which
	SINT		you want to copy a result of
	INT		the external routine
	DINT		The return parameter is
	REAL		optional.
			You can have only one return
			parameter

EXT_ROUTINE_CONTROL Structure

Mnemonic	Data Type	Description	Implementation
ErrorCode	SINT	If an error occurs, this value	There are no predefined error
		identifies the error. Valid	codes. The developer of the
		values are from 0-255.	

			external routine must provide
			the error codes.
NumParams	SINT	This value indicates the	Display only - this information
		number of parameters	is derived from the instruction
		associated with this	entry.
		instruction.	
ParameterDefs	EXT_ROUTINE_	This array contains definitions	Display only - this information
	PARAMETERS[10]	of the parameters to pass	is derived from the instructio
		to the external routine. The	entry.
		instruction can pass as many	
		as 10 parameters.	
ReturnParamDef	EXT_ROUTIN_ PARAMETERS	This value contains definitions	Display only - this information
		of the return parameter from	is derived from the instructio
		the external routine. There is	entry.
		only one return parameter.	
EN	BOOL	When set, the enable bit	The external routine sets this
		indicates that the JXR	bit.
		instruction is enabled.	
ReturnsValue	BOOL	If set, this bit indicates that a	Display only - this information
		return parameter was entered	is derived from the instructio
		for the instruction. If cleared,	entry.
		this bit indicates that no	
		return parameter was entered	
		for the instruction.	
DN	BOOL	The done bit is set when the	The external routine sets this
		external routine has executed	bit.
		once to completion.	
ER	BOOL	The error bit is set if an error	The external routine sets this
		occurs. The instruction stops	bit.
		executing until the program	
		clears the error bit.	
FirstScan	BOOL	This bit identifies whether	The controller sets this bit to
		this is the first scan after	reflect scan status.
		switching the controller to	
		Run mode. Use FirstScan to	
		initialize the external routine,	
		if needed.	
EnableOut	BOOL	Enable output.	The external routine sets this
			bit.
EnableIn	BOOL	Enable input.	The controller sets this bit
		-	to reflect rung-condition-in.
			The instruction executes
			regardless of rung condition.

		The developer of the external routine should monitor this status and act accordingly.
User1	BOOL	These bits are available for the Either the external routine
User0	BOOL	user. The controller does not or the user program can set
		initialize these bits. these bits.
ScanType1	BOOL	These bits identify the current The controller sets these bits
ScanType0	BOOL	scan type: to reflect scan status.
		Bit Values Scan Type
		00 Normal
		01 Pre Scan
		10 Post
		Scan (not
		applicable to
		relay ladder
		programs)

Description

Use the Jump to External Routine (JXR) instruction to call the external routine from a ladder routine in your project. The JXR instruction supports multiple parameters so you can pass values between the ladder routine and the external routine.

The JXR instruction is similar to the Jump to Subroutine (JSR) instruction. The JXR instruction initiates the execution of the specified external routine:

- The external routine executes one time.
- After the external routine executes, logic execution returns to the routine that contains the JXR instruction.

Affects Math Status Flags

No

Major/Minor Faults

A major fault will occur if	Fault Type	Fault Code:
An exception occurs in the external	4	88
routine DLL.		
The DLL could not be loaded.		
The entry point was not found in the DLL.		

Execution

The JXR can be synchronous or asynchronous depending on the implementation of the DLL. The code in the DLL also determines how to respond to scan status, rung-condition-in status, and rung-condition-out status.

For more information on using the JXR instruction and creating external routines, see thehttps:// literature.rockwellautomation.com/idc/groups/literature/documents/um/1789-um002_-en-p.pdf.

Jump to Label (JMP) and Label (LBL)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The JMP and LBL instructions skip portions of ladder logic.

Available Languages

Ladder Diagram

—(JMP)—

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

Ladder Diagram

Operand	Format	Description
JMP instruction		
Label name	label name	Enter the name for associated LBL instruction
LBL instruction		
Label name	label name	Execution jumps to the references LBL instruction

Description

When true, the JMP instruction skips to the referenced LBL instruction and the controller continues executing from there. When false, the JMP instruction does not affect ladder execution.

The JMP and LBL it references must be in the same routine.

The JMP instruction can move ladder execution forward or backward. Jumping forward to a label saves program scan time by omitting a logic segment until it is needed. Jumping backward lets the controller repeat iterations of logic.

IMPORTANT: Be careful not to jump backward an excessive number of times. The watchdog timer

could time out because the scan does not complete in time.

IMPORTANT: Jumped logic is not scanned. Place critical logic outside the jumped zone.

A JMP instruction requires the associated label to exist before you:

- Download when working offline
- Accept edits when working online

The LBL instruction must be the first instruction on the rung.

A label name must be unique within a routine. The name can:

- Have as many as 40 characters
- Contain letters, numbers, and underscores (_)

Affects Math Status Flags

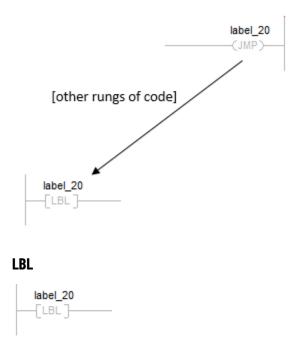
No.

Major/Minor Faults

None specific to this instruction. See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram


Condition	Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	(For JMP) Execution jumps to the rung that contains the LBL
	instruction with the referenced label name.
	(For LBL) no action taken
Postscan	N/A

Example

Ladder Diagram

JMP

When the JMP instruction is enabled, execution jumps over successive rungs of logic until it reaches the rung that contains the LBL instruction with label_20.

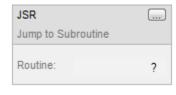
Jump to Subroutine (JSR), Subroutine (SBR), and Return (RET)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The JSR instruction invokes another routine. When that routine completes, the execution returns to the JSR instruction.

The SBR instruction receives the input parameters passed by the JSR.

The RET instruction passes return parameters back to the JSR and ends the scan of the subroutine.


Available Languages

Ladder Diagram

JSR	
Jump To Subroutin	e
Routine Name	?
Input Par	?
Return Par	?
SBR	
Subroutine	
Input Par	2

	RET		
_	Return	from Subr	outine -
	Return	Par	?

Function Block

Sequential Function Chart

Structured Text

JSR(RoutineName,InputCount,InputPar,ReturnPar);

SBR(InputPar);

RET(ReturnPar);

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

WARNING: For each parameter in an SBR or RET instruction, use the same data type (including any array dimensions) as the corresponding parameter in the JSR instruction. Using different data types may yield unexpected results.

Ladder Diagram

JSR Instruction

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Routine Name	ROUTINE	ROUTINE	name	Subroutine to execute
Input Par	BOOL SINT INT DINT REAL structure	BOOL SINT INT DINT LINT USINT UINT ULINT REAL LREAL STRUCTURE	immediate tag array tag	Data from this routine to copy to a tag in the subroutine. • Input parameters are optional • Enter a maximum of 40 input parameters, if needed.
Return Par	BOOL SINT INT DINT REAL structure	BOOL SINT INT DINT LINT USINT UINT ULINT REAL LREAL STRUCTURE	tag array tag	 Tag in this routine to copy result from subroutine. Return parameter: are optional Enter a maximum of 40 return parameters, if needed

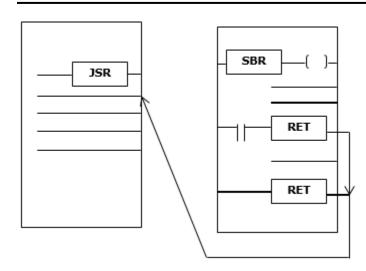
SBR Instruction

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Input Par	BOOL	BOOL	tag	• Tag in this routine
	SINT	SINT	array tag	into which to copy
	INT	INT		the corresponding
	DINT	DINT		input parameter
	REAL	LINT		(maximum 40)
	structure	USINT		from the JSR
		UINT		instruction.
		UDINT		
		ULINT		
		REAL		
		LREAL		
		structure		

RET Instruction

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Return Par	BOOL	BOOL	immediate tag	Data from this
	SINT	SINT	array tag	routine to copy to
	INT	INT		the corresponding
	DINT	DINT		return parameter
	REAL	LINT		(maximum 40) in the
	structure	USINT		JSR instruction.
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
		structure		

Affects Math Status Flags


Major/Minor Faults

A major fault will occur if:	Fault type	Fault code
JSR instruction has fewer input parameters than SBR instruction	4	31
JSR instruction jumps to a fault routine	4	990 or user-supplied
RET instruction has fewer return parameters than JSR instruction	4	31
Main routine contains a RET instruction	4	31

Operation

IMPORTANT: Any routine may contain a JSR instruction but a JSR instruction cannot call (execute)

the main routine.

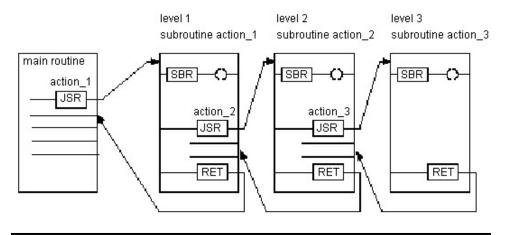
The JSR instruction initiates the execution of the specified routine, which is referred to as a subroutine:

- The subroutine executes each time it is scanned.
- After the subroutine executes, logic execution returns to the routine that contains the JSR instruction and continues with the instruction following the JSR.

To program a jump to a subroutine, follow these guidelines.

JSR

- To copy data to a tag in the subroutine enter an input parameter.
- To copy a result of the subroutine to a tag in this routine, enter a return parameter.
- Enter up to 40 inputs and enter up to 40 return parameters as needed.


SBR

- If the JSR instruction has an input parameter enter an SBR instruction.
- Place SBR instruction as the first instruction in the routine.
- For each input Parameter in the JSR Instruction, enter the tag into which you want to copy the data.

RET

- If the JSR instruction has a return parameter, enter an RET instruction.
- Place the RET instruction as the last instruction in the routine.
- For each return parameter in the JSR instruction, enter a return parameter to send to the JSR instruction.
- In a ladder routine, place additional RET instructions to exit the subroutine based on different input conditions, if required (Function block routines only permit one RET instruction).

Invoke up to 25 nested subroutines, with a maximum of 40 parameters passed into a subroutine, and a maximum of 40 parameters returned from a subroutine.

Tip: Select the **Edit > Edit Ladder Element** menu to add and remove variable operands. For the JSR and SBR instructions, add Input Parameter. For JSR and RET instructions, add Output Parameter. For all three instructions, remove Instruction Parameter.

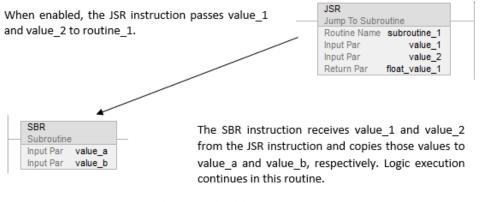
Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	The rung is set to false.	
	The controller executes all subroutines. To ensure that all	
	rungs in the subroutine are prescanned, the controller ignores	
	RET instructions (that is, RET instructions do not exit the	
	subroutine).	
	Input and return parameters are not passed.	
	If the same subroutine is invoked multiple times, it will only be	
	prescanned once.	
Rung-condition-in is false (to the JSR instruction)	N/A	
Rung-condition-in is true	Parameters are passed and the subroutine is executed.	
Postscan	Same action as Prescan	

Function Block

Condition/State	Action Taken	
Prescan	See Prescan in the Ladder Diagram table.	
EnableIn is false	N/A	
Enableln is true	Parameters are passed and the subroutine is executed	
Instruction first run	N/A	
Instruction first scan	N/A	
Postscan	See Postscan in the Ladder Diagram table.	


Structured Text

Condition/State	Action Taken	
Prescan	See Prescan in the Ladder Diagram table.	
Normal Execution	Parameters are passed and the subroutine is executed.	
Postscan	See Postscan in the Ladder Diagram table.	

Examples

Example 1

Ladder Diagram

[other rungs of code]

When enabled, the RET instruction sends float_a to the JSR instruction. The JSR instruction receives float_a and copies the value to float_value_1. Logic execution continues with the next instruction following the JSR instruction.

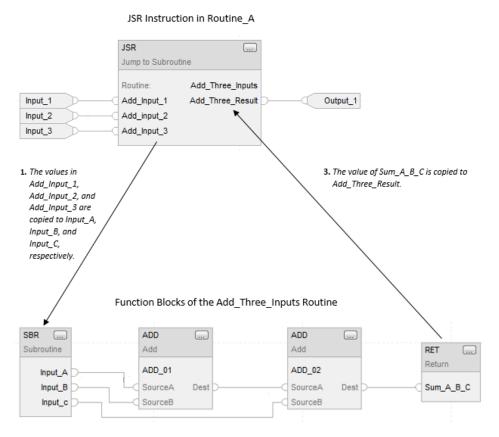
Structured Text

Routine	Program	
Main routine	JSR(routine_1,2,value_1,value_2,float_value_1);	
Subroutine	SBR(value_a,value_b);	
	<statements>;</statements>	
	RET(float_a);	

Example 2

Ladder Diagram

Main routine



subroutine_1

Example 3

Function Block

2. The ADD instructions add Input_A, Input_B, and Input_C and place the result in Sum_A_B_C.

Add Input Parameter command

Choose this command to add an input operand to a JSR or SBR instruction.

Master Control Reset (MCR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The MCR instruction simulates a master control relay (a mandatory hard-wired relay that can be de-energized by any series-connected emergency stop switch). Whenever the relay is de-energized, its contacts open to de-energize all application I/O devices. The MCR instruction can selectively disable a section of rungs.

Available Languages

Ladder Diagram

----(MCR)-----

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

Description

The MCR instruction is able to override the normal behavior of rungs; forcing every instruction to execute as if rungcondition-in is false. Typically, false execution of an instruction is faster than true so, selectively disabling unneeded sections of code could result in an overall improvement in scan time.

Each time the MCR instruction is executed with rung-condition-in false, the override behavior is toggled. Consequently, two MCR instructions are normally required: one to start the "zone" and a second to terminate it.

The starting MCR is typically conditioned by one or more input instructions. When the input conditions are false, the zone will be disabled. When the input conditions are true, the zone will operate normally.

The terminating MCR is normally unconditional. If the zone is enabled, the terminating MCR will be true so it will do nothing. If the zone is disabled, however, the terminating MCR will be false so it will toggle the override, re-enabling the rungs that follow it.

When you program an MCR zone, note that:

MCR instruction must be the last instruction of a rung.

- You should end the zone with an unconditional MCR instruction. If the terminating MCR is false, and the zone
 is enabled, the terminating MCR will disable all of the rungs that follow it.
- You cannot nest one MCR zone within another. There is only one override bit in each program. Each MCR
 instruction has the ability to toggle this override. Attempting to nest MCR zones will actually result in multiple
 smaller zones to be created.
- Do not jump into an MCR zone. If the starting MCR is not executed, the zone will not be disabled.
- The override bit is automatically reset at the end of the routine. If an MCR zone continues to the end of the
 routine, you do not have to program an MCR instruction to end the zone, however, to avoid confusion when
 online editing, it is recommended that the terminating MCR always be used.

If the MCR is disabled in a subroutine or an AOI, the override bit will be reset when the subroutine/AOI returns.

AOIs have their own override bit which is initialized when the AOI is invoked. If an AOI is invoked from within a disabled MCR zone, the false scan mode routine will execute normally. After the AOI returns, the state of the zone will be restored to what it was before the AOI was invoked.

IMPORTANT: The MCR instruction is not a substitute for a hard-wired master control relay that provides emergency-stop capability. You should still install a hard-wired master control relay to provide emergency I/O power shutdown.

IMPORTANT: Do not overlap or nest MCR zones. Each MCR zone must be separate and complete. If they overlap or nest, unpredictable machine operation could occur with possible damage to equipment or injury to personnel.

Place critical operations outside the MCR zone. If you start instructions such as timers in a MCR zone, instruction execution becomes false when the zone is disabled and the timer will be cleared.

Affects Math Status Flags

No

Major/Minor Faults

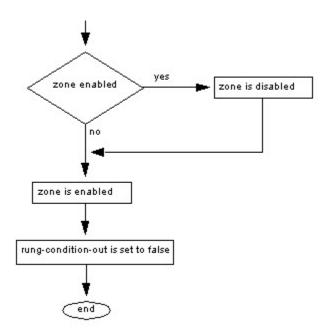
None specific to this instruction. See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	The override behavior is toggled enabling or disabling the rungs that follow.	
Rung-condition-in is true	N/A	
Postscan	N/A	

Example


Ladder Diagram

When the first MCR instruction is enabled (input_1, input_2, and input_3 are set), the controller executes the rungs in the MCR zone (between the two MCR instructions) and sets or clears outputs, depending on input conditions.

When the first MCR instruction is disabled (input_1, input_2, and input_3 are not all set), the controller executes the rungs in the MCR zone (between the two MCR instructions) and the EnableIn goes false for all the rungs in the MCR zone, regardless of input conditions.

MCR Flow Chart (False)

No Operation (NOP)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The NOP instruction functions as a placeholder.

Available Languages

Ladder Diagram

---[NOP]---

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

Ladder Diagram

None

Description

You can place the NOP instruction anywhere on a rung. When enabled the NOP instruction performs no operation. When disabled, the NOP instruction performs no operation.

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	N/A
Postscan	N/A

Examples

Ladder Diagram

tgITest1		output1
	[NOB]	1

Pause SFC (SFP)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The SFP instruction pauses an SFC routine.

Available Languages

Ladder Diagram

SFP	
SFC Pause	
SFC Routine Name	?
Target State	?

Function Block

This instruction is not available in function block.

Structured Text

SFP(SFCRoutineName,TargetState);

Operands

Ladder Diagram

Operand	Туре	Format	Description
SFCRoutineName	ROUTINE	name	SFC routine to pause
TargetState	DINT	immediate	Select one:
			• Executing (or enter 0)
			Paused (or enter 1)

Structured Text

Operand	Туре	Format	Description	
SFCRoutineName	ROUTINE	name	SFC routine to pause	
TargetState	DINT	immediate	Select one:	
			• Executing (or enter 0)	
			Paused (or enter 1)	

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Description

The SFP instruction lets you pause an executing SFC routine.

Affects Math Status Flags

No

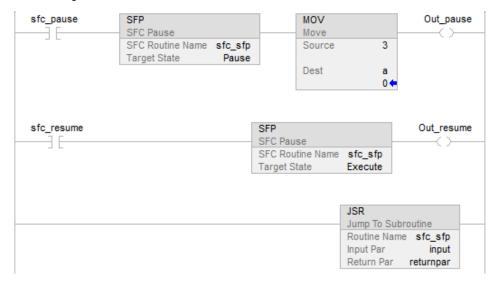
Fault Conditions

A major fault will occur if:	Fault Type	Fault Code
The routine type is not an SFC routine	4	85

See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram


Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false.	N/A
Rung-condition-in is true	The instruction pauses or resumes execution of the specified SFC routine.
Postscan	N/A

Structured Text

Condition/State	Action Taken	
Prescan	N/A	
Normal execution	The instruction pauses or resumes execution of the specified	
	SFC routine.	
Postscan	N/A	

Example

Ladder Diagram

Reset SFC (SFR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The SFR instruction resets the execution of an SFC routine at a specified step.

Available Languages

Ladder Diagram

SFR	
SFC Reset	
SFC Routine Name	?
Step Name	?

Function Block

This instruction is not available in function block.

Structured Text

SFR(SFCRoutineName,StepName);

Operands

Ladder Diagram

Operand	Туре	Format	Description
SFCRoutineName	ROUTINE	name	SFC routine to reset
StepName	SFC_STEP	tag	Target step where to resume
			execution

Structured Text

Operand	Туре	Format	Description
SFCRoutineName	ROUTINE	name	SFC routine to reset
StepName	SFC_STEP	tag	Target step where to resume
			execution

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Description

When the SFR instruction is enabled:

- In the specified SFC routine, all stored actions stop executing (reset).
- The SFC begins executing at the specified step.
- If the target step is 0, the chart will be reset to is initial step.

The Logix implementation of the SFR instruction differs from that in the PLC-5 controller. In the PLC-5 controller, the SFR executes when the rung condition is true. After reset, the SFC would remain paused until the rung containing the SFR became false. This allowed the execution following a reset to be delayed. This pause/un-pause feature of the PLC-5 SFR instruction was decoupled from the rung condition and moved into the SFP instruction.

Affects Math Status Flags

No

Fault Conditions

A major fault will occur if:	Fault Type	Fault Code
The routine type is not an SFC routine	4	85
Specified target step does not exist in the	4	89
SFC routine		

See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-inis false	N/A
Rung-condition-in is true	The instruction reset the specified SFC routine execution to a particular step.
Postscan	N/A

Structured Text

Condition/State	Action Taken	
Prescan	N/A	
Normal execution	The instruction reset the specified SFC routine execution to a	
	particular step.	
Postscan	N/A	

Example

Ladder Diagram shutdown_sfc Out_shutdown SFR SFC Reset \odot SFC Routine Name sfc_sfr Step Name Initialize restart_sfc SFP Out_restart - 1 E SFC Pause \odot SFC Routine Name sfc_sfr Target State Execute **JSR** Jump To Subroutine Routine Name sfc_sfr Input Par inputpar Return Par returnpar

Temporary End (TND)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The TND instruction conditionally ends a routine.

Available Languages

Ladder Diagram

-(TND)-

Function Block

This instruction is not available in function block.

Structured Text

TND();

Operands

Ladder Diagram

None

Structured Text

None

Description

When enabled, the TND instruction acts as the end of the routine. If the TND instruction is in a subroutine, control returns to the calling routine. If the TND instruction is in a main routine, control returns to the next program within the current task.

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true.	The routine ends
Postscan	N/A

Structured Text

Condition/State	Action Taken	
Prescan	See Prescan in the Ladder Diagram table.	
Normal execution	See rung-condition-in is true in the Ladder Diagram table	
Postscan	See Postscan in the Ladder Digram table.	

Structured Text

InputA[:=] OutputB;

IF (InputA) THEN

TND();

END_IF;

InputE [:=] OutputF;

Trigger Event Task (EVENT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The EVENT instruction triggers one execution of an event task.

Available Languages

Ladder Diagram

EVENT	
Trigger E	vent Task
Task	?

Function Block

This instruction is not available in function block.

Structured Text

EVENT(task_name);

Operands

Ladder Diagram

Operand	Туре	Format	Description
Task	TASK	name	Event task to execute. If a task
			is specified that is not the
			Event task, the specified task
			will not be executed.

Structured Text

Operand	Туре	Format	Description
Task	TASK	name	Event task to execute. If a task
			is specified that is not the
			Event task, the specified task
			will not be executed.

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Description

Use the EVENT instruction to programmatically execute an event task.

Each time the instruction executes, it trigger the specified event task.

Make sure that you give the event task enough time to complete its execution before you trigger it again. If not, an overlap occurs.

If you execute an EVENT instruction while the event task is already executing, the controller increments the overlap counter, but it does not trigger the event task.

EVENT instruction can be used to trigger Event Task with all the trigger types.

Programmatically Determine if an EVENT Instruction Triggered a Task

To determine if an EVENT instruction triggered an event task, use a Get System Value (GSV) instruction to monitor the Status attribute of the task.

Attribute	Data Type	Instruction	Description
Status	DINT	gsv Ssv	Provides status information about the task. One the controller sets a bit, you must manually clea the bit to determine if another fault of that type occurred.
			To determine if Examine this bit
			An EVENT instruction 0 triggered the task (event task only)
			A timeout triggered the 1 task (event task only)
			An overlap occurred for 2 this task

The controller does not clear the bits of the Status attribute once they are set. To use a bit for new status information, you must manually clear the bit. Use a Set System Value (SSV) instruction to set the attribute to a different value.

Affects Math Status Flags

No

Fault Conditions

None specific to this instruction. See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action Taken
Prescan	N/A
Normal execution	The instruction executes.
Postscan	N/A

Examples

Example 1

A controller uses multiple programs, but a common shut down procedure. Each program uses a program-scoped tag named Shut_Down_Line that turns on if the program detects a condition that requires a shut down. The logic in each program executes as follows.

If Shut_Down_Line = on (conditions require a shut down) then

Execute the Shut_Down task one time

Ladder Diagram

Program A

Program B

Shut_Down_Line	Shut_Down_Line_One_Shot	EVENT	
] [Trigger Event Task	_
		Task Shut_Down	

Structured Text

Program A

IF Shut_Down_Line AND NOT Shut_Down_Line_One_Shot THEN

EVENT (Shut_Down);

END_IF;

Shut_Down_Line_One_Shot:=Shut_Down_Line;

Program B

IF Shut_Down_Line AND NOT Shut_Down_Line_One_Shot THEN

EVENT (Shut_Down);

END_IF;

Shut_Down_Line_One_Shot:=Shut_Down_Line;

Example 2

The following example uses an EVENT instruction to initialize an event task. Another type of event normally triggers the event task.

Continuous Task

IF Initialize_Task_1 = 1 THEN

The ONS instruction limits the execution of the EVENT instruction to 1 scan.

The EVENT instruction triggers an execution of Task_1 (event task).

Initialize_Task_1	Storage.0	EVENT
	[ONS]	Trigger Event Task
		Task Task_1

Task_1 (event task)

The GSV instruction sets Task_Status (DINT tag) = Status attribute for the event task. In the Instance Name attribute, THIS means the TASK object for the task that the instruction is in (e.g., Task_1).

GSV Get System Value	
Class Name Instance Name	Task THIS Status
Dest Task_1	

If Task_Status.0=1 then an EVENT instruction triggered the event task (i.e., when the continuous task executes its EVENT instruction to initialize the event task).

The RES instruction resets a counter the event task uses.

Task_Status.0	Counter_1
	(DEC)
	(RLS)

The controller does not clear the bits of the Status attribute once they are set. To use a bit for new status information, you must manually clear the bit.

If Task_Status.0 = 1 then clear that bit.

The OTU instruction sets Task_Status.0 = 0.

The SSV instruction sets the Status attribute of THIS task (Task_1) = Task_Status. This includes the cleared bit.

Task_Status.0 SSV	
(U) Set System Value	
Class Name Task	
Instance Name THIS	
Attribute Name Status	
Source Task_Status	
0 🔶	
	(U) Set System Value Class Name Task Instance Name THIS Attribute Name Status Source Task_Status

User Interrupt Disable (UID)/User Interrupt Enable (UIE)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The UID instruction and the UIE instruction work together to prevent a small number of critical rungs from being interrupted by other tasks.

vailable Languages

Ladder Diagrams

Function Block

This instruction is not available in function block.

Structured Text

UID();

UIE();

Operands

Ladder Diagram

This instruction is not available in ladder diagram.

Structured Text

This instruction is not available in structured text. You must enter the parentheses () after the instruction mnemonic, even though there are no operands.

Description

When the rung-condition-in is true, the:

- UID instruction prevents higher-priority tasks from interrupting the current task, but does not disable execution of a fault routine or the Controller Fault Handler.
- UIE instruction enables other tasks to interrupt the current task.

To prevent a series of rungs from being interrupted:

- 1. Limit the number of rungs that you do not want interrupted to as few as possible. Disabling interrupts for a prolonged period of time can produce communication loss.
- 2. Above the first rung that you do not want interrupted, enter a rung and a UID instruction.
- 3. After the last rung in the series that you do not want interrupted, enter a rung and a UIE instruction.
- 4. If required, you can nest pairs of UID/UIE instructions.

When the UID is called for the first time, it bumps priority, saves the old priority, and increments a nesting counter. Each subsequent call increments the count. The UIE will decrement the nesting counter. If the new value is 0, it will restore the saved priority.

Affects Math Status Flags

No.

Fault Conditions

None specific to this instruction. See Common Attributes on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition/State	Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The UID instruction prevents the containing user task from being Interrupted. The UIE instruction enables the containing user task to be interrupted as is normally in the case.
Postscan	N/A

Structured Text

Condition/State	Action
Prescan	N/A
Normal execution	The UID instruction prevents the containing user task from being Interrupted. The UIE instruction enables the containing user task to be interrupted as is normally in the case.
Postscan	N/A

Example

Ladder Diagram

error_bit	FSC	
	File Search/Compare	(EN)-
	Control	error_check
	Length	10 🖛 – (DN)-
	Position	8 🖛
	Mode	ALL -(ER)-
	Expression error_code=error	list[error_check.POS]
rror_check.FD		alan

Structured Text

UID();

<statements>

UIE();

Unknown Instruction (UNK)

The UNK instruction functions as an indication that you have entered an instruction type that is not defined within the Logix Designer instruction set.

Available Languages

Ladder Diagram

UNK	
Unknown Instruction	
Unknown	?
	??

Function Block

This instruction is not available in function block

Structured Text

This instruction is not available in function block.

Operands

Ladder Diagram

Operand	Туре	Format	Description
Unknown	immediate	immediate	

For/Break Instructions

Use the FOR instruction to repeatedly call a subroutine. Use the BRK instruction to interrupt the execution of a subroutine.

Available Instructions

Ladder Diagram

Use the FOR instruction to repeatedly call a subroutine. Use the BRK instruction to interrupt the execution of the subroutine.

If you want to:	Use this instruction:
Repeatedly execute a routine.	For (FOR) on page 650
Terminate the repeated execution of a routine.	Break (BRK) on page 649

Break (BRK)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The BRK instruction interrupts the execution of a routine that was called by a FOR instruction.

When enabled, the BRK instruction exits the routine and returns control to the routine containing the most recently executed FOR instruction, resuming execution following that instruction. If no FOR instruction preceded this BRK instruction in its execution during this scan then BRK does not initiate.

If there are nested FOR instructions, a BRK instruction returns control to the innermost FOR instruction.

Available Languages

Ladder Diagram

---(BRK)----

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Common Attributes for General Instructions on page 849 for operand-related faults.

Execution

Condition/State	Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Example

When enabled, the BRK instruction stops executing the current routine and returns to the instruction that follows the calling FOR instruction.

Ladder Diagram

ForBreakTest	FOR	ForBreakTest
	For Routine Name routine2 Index value 2	(U)
	50001 Initial Value initial_value	
	Terminal Value 50000 Step Size 1	

This is the routine2:

For (FOR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The FOR instruction executes a routine repeatedly.

When enabled, the FOR instruction repeatedly executes the Routine until the Index value exceeds the Terminal value. This instruction does not pass parameters to the routine.

The step value can be positive or negative. If it is negative, the loop ends when the index is less than the terminal value. If it is positive, the loop ends when the index is greater than the terminal value.

Each time the FOR instruction executes the routine, it adds the Step size to the Index.

Be careful not to loop too many times in a single scan. An excessive number of repetitions can cause the controller's watchdog to timeout, which causes a major fault.

Available Languages

Ladder Diagram

FOR	
For	
Routine Name	?
Index	?
	??
Initial Value	?
Terminal Value	?
Step Size	?

Operands

Ladder Diagram

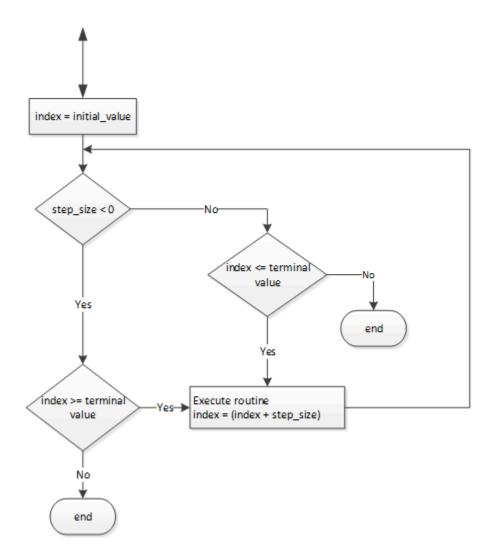
Operand	Туре	Format	Description
Routine name	ROUTINE	tag	Subroutine that is invoked
			each time the FOR loop
			executes.
Index	DINT	tag	Counts how many times the
			routine has been executed
Initial value	SINT	immediate	Value at which to start the
	INT	tag	index
	DINT		
Terminal value	SINT	immediate	Value at which to stop
	INT	tag	executing the routine
	DINT		
Step size	SINT	immediate	Amount to add to the index
	INT	tag	each time the FOR instruction
	DINT		executes the routine

Affects Math Status Flags

No

Major/Minor Faults

A major fault will occur if:	Fault type	Fault code
The nesting level limit > 25	4	94
the subroutine is an SFC and it is already	4	82
executing (recursive call)		


See Common Attributes for General Instructions on page 849 for operand-related faults.

Execution

Condition/State	Action	
Prescan	The instruction will prescan the named subroutine if it has	
	never been prescanned before.	

Condition/State	Action	
	Tip: If recursive FOR instruction exist to the same subroutine, or multiple FOR instruction exist (non-recursive) to the same subroutine, the subroutine is pre-scanned only once. This is also true if the subordinate was prescanned by a JSR.	
Rung-condition-in is false	N/A	
Rung-condition-in is true	See the following FOR Flow Chart (True).	
Postscan	The instruction will postscan the named subroutine exactly once.	

FOR Flow Chart (True)

Examples

When enabled, the FOR instruction repeatedly executes routine_2 and increments value_2 by 1 each time. When

value_2 is > 50000 or a BRK instruction is enabled, the FOR instruction no longer executes routine_2.

ForBreakTest	FOR For	ForBreakTest
	Routine Name routine Index value	2
	5000 Initial Value Terminal Value 5000	0
	Step Size	1

Special Instructions

The special instructions perform application-specific operations.

Available Instructions

If you want to:	Use this instruction:
Compare data against a known, good reference and record any	FBC on page 665
mismatches.	
Compare data against a known, good reference, record any	DDT on page 658
mismatches, and update the reference to match the source.	
Pass the source data through a mask and compare the result to	DTR on page 655
reference data. Then write the source into the reference for the	
next comparison.	
Control a PID loop.	PI on page 673

Data Transition (DTR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The DTR instruction passes the Source value through a Mask and compares the result with the Reference value.

The DTR instruction also writes the masked Source value into the Reference value for the next comparison. The Source remains unchanged.

A "1" in the mask means the data bit is passed. A "0" in the mask means the data bit is blocked.

When enabled, the Mask passes data when the Mask bits are set; the Mask blocks data when the Mask bits are cleared.

When the masked Source differs from the Reference, the EnableOut goes true for one scan. When the masked Source is the same as the Reference, the EnableOut is false.

IMPORTANT: Online programming with this instruction can be dangerous. If the Reference value is different than the Source value, the EnableOut goes true. Use caution if you insert this instruction when the processor is in Run or Remote Run mode.

Available Languages

Ladder Diagram

DTR	
Data Transition	-
Source	?
	??
Mask	?
	??
Reference	?
	??

Operands

Ladder Diagram

Operand	Туре	Format	Description
Source	DINT	immediate	array to compare to the
		tag	reference
Mask	DINT	immediate	which bits to block or pass
		tag	
Reference	DINT	tag	array to compare to the source

Entering an immediate mask value

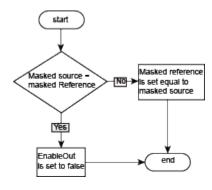
When you enter a mask, the programming software defaults to decimal values. If you want to enter a mask using another format, precede the value with the correct prefix.

Prefix	Description
16#	hexadecimal (e.g., 16#0F0F)
8#	octal (e.g., 8#16)
2#	binary (e.g., 2#00110011)

Affects Math Status Flags

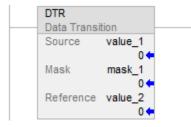
No

Major/Minor Faults

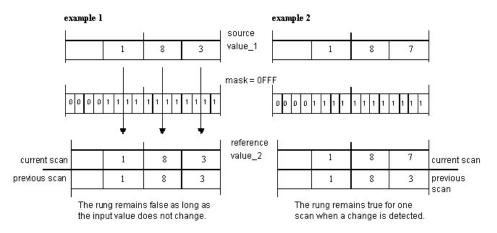

None specific to this instruction. See Common Attributes for General Instructions on page 849 for operand-related faults.

Execution

Condition	Action
Prescan	The Reference = Source AND Mask.
Rung-condition-in is false	The Reference = Source AND Mask.
Rung-condition-in is true	See DTR Flow Chart (True)


Condition	Action
Postscan	N/A

DTR Flow Chart (True)



Example

Ladder Diagram

When enabled, the DTR instruction masks value_1. If there is a difference in the two masked values, the EnableOut is set to true.

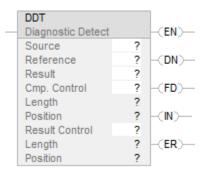
In example 1, since reference value is equal to sourcevalue_1 AND mask, so the EnableOut will always set to false. In example 2, for some reason, the source value is changed, then reference_value is not equal to source_value AND mask, so in case of this, the EnableOut will be set to TRUE and the referencevalue will be updated based on the sourceValue and mask. That's why you see in previous scan the reference value is 183, but in current scan it is 187. The rung remains true only for one scan when a change is detected because in the next scan as long as source is not changed, the rung will remains false because the reference value will be equal to source value AND mask again.

Diagnostic Detect (DDT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The DDT instruction compares bits in a Source array with bits in a Reference array to find mismatch bit. The mismatch bit location is then recorded and the mismatch Reference bit is changed to match Source bit.

When enabled, the DDT instruction compares the bits in the Source array with the bits in the Reference array, records the bit number of each mismatch in the Result array, and changes the value of the Reference bit to match the value of the corresponding Source bit.


IMPORTANT: The DDT instruction operates on contiguous memory. You must test and confirm that the instruction does not change data that you don't want it to change.

The difference between the DDT and FBC instructions is that each time the DDT instruction finds a mismatch, the DDT instruction changes the reference bit to match the source bit. The FBC instruction does not change the reference bit.

If the instruction tries to read past the end of an array, the instruction sets the .ER bit and generates a major fault.

Available Languages

Ladder Diagram

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Operand	Туре	Format	Description
Source	DINT	array tag	Array to compare to the reference do not use CONTROL.POS in the subscript
Reference	DINT	array tag	Array to compare to the source do not use CONTROL.POS in the subscript

Operand	Туре	Format	Description
Result	DINT	array tag	Array to store the results do not use CONTROL.POS in the subscript
Cmp. Control	CONTROL	structure	Control structure for the compare
Length	DINT	immediate	Number of bits to compare
Position	DINT	immediate	Current position in the source initial value typically 0
Result control	CONTROL	structure	Control structure for the results
Length	DINT	immediate	Number of storage locations in the result
Position	DINT	immediate	Current position in the result initial value typically 0

IMPORTANT: Use different tags for the compare control structure and the result control structure. Using the same tag for both could result in unpredictable operation, possibly causing equipment damage and/or injury to personnel.

COMPARE Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the DDT
		instruction is enabled.
.DN	BOOL	The done bit is set when the DDT
		instruction compares the last bit in the
		Source and Reference arrays.
.FD	BOOL	The found bit is set each time the
		DDT instruction records a mismatch
		(one-at-a-time operation) or after
		recording all mismatches (all-per-scan
		operation).
.IN	BOOL	The inhibit bit indicates the DDT search
		mode.
		0 = all mode
		1 = one mismatch at a time mode
.ER	BOOL	The error bit is either POS or LEN are
		invalid.
.LEN	DINT	The length value identifies the number of
		bits to compare.

Mnemonic	Data Type	Description
.POS	DINT	The position value identifies the current
		bit.

RESULT Structure

Mnemonic	Data Type	Description	
.DN	BOOL	The done bit is set when the Result array is full.	
.LEN	DINT	The length value identifies the number of storage locations in the Result array.	
.POS	DINT	The position value identifies the current position in the Result array.	

Select the search mode

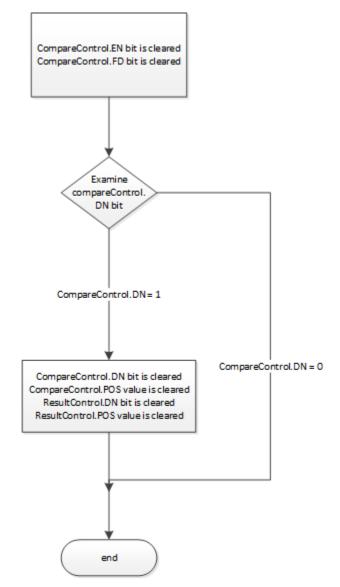
If you want to detect:	Select this mode:
One mismatch at a time	Set the .IN bit in the compare CONTROL structure.
	Each time the EnableIn goes from false to true, the DDT
	instruction searches for the next mismatch between the
	Source and Reference arrays. Upon finding a mismatch, the
	instruction stops, sets the .FD bit, and records the position of
	the mismatch.
All mismatches	Clear the .IN bit in the compare CONTROL structure.
	Each time the EnableIn goes from false to true, the DDT
	instruction searches for all mismatches between the Source
	and Reference arrays.

Affects Math Status Flags

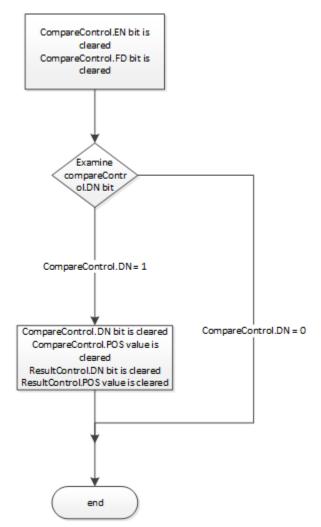
No

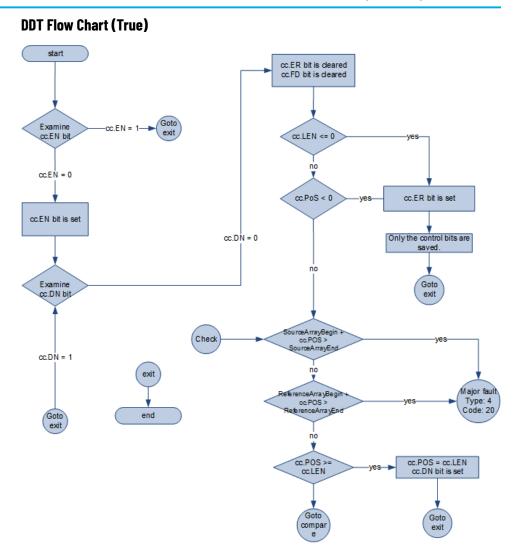
Major/Minor Faults

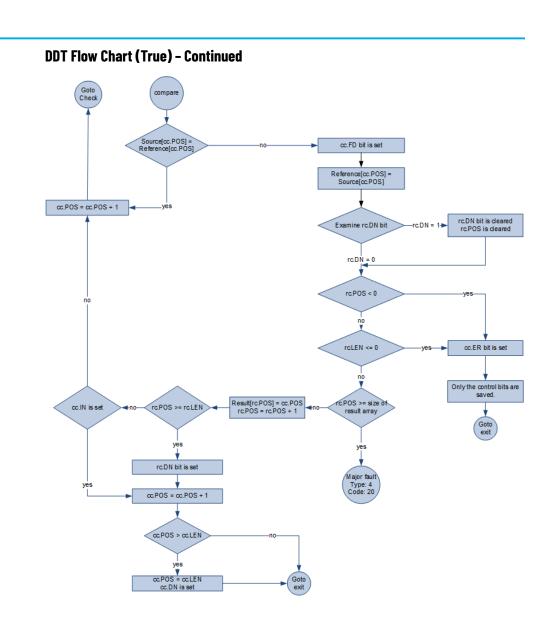
A major fault will occur if:	Fault type	Fault code
result.POS > size of result array	4	20


See Common Attributes for General Instructions on page 849 for operand related faults.

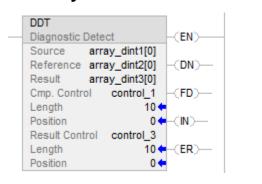
Execution

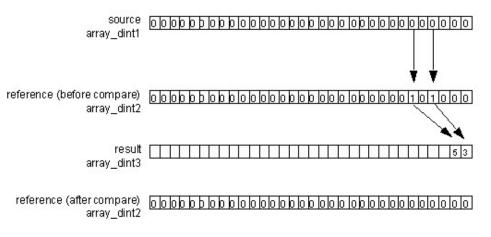

Condition/State	Action Taken
Prescan	See DDT Flow Chart (Prescan)
Rung-condition-in is false	See DDT Flow Chart (False)


Condition/State	Action Taken
Rung-condition-in is true	See DDT Flow Chart (True)
Postscan	N/A


DDT Flow Chart (Prescan)

DDT Flow Chart (False)





Examples

Ladder Diagram

File Bit Comparison (FBC)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The FBC instruction compares bits in a Source array with bits in a Reference array.

When enabled, the FBC instruction compares the bits in the Source array with the bits in the Reference array and records the bit number of each mismatch in the Result array.

IMPORTANT: The FBC instruction operates on contiguous memory. You must test and confirm that the instruction doesn't change data that you don't want it to change.

The difference between the DDT and FBC instructions is that each time the DDT instruction finds a mismatch, the instruction changes the reference bit to match the source bit. The FBC instruction does not change the reference bit.

If the instruction tries to read past the end of an array, the instruction sets the .ER bit and generates a major fault.

Available Languages

Ladder Diagram

	FBC		
_	File Bit Comparisor	n	-(EN)
	Source	?	
	Reference	?	-(DN)
	Result	?	
	Cmp. Control	?	-(FD)
	Length	?	
	Position	?	-(N)
	Result Control	?	
	Length	?	-(ER)
	Position	?	

Operands

There are data conversion rules for mixed data types within an instruction. See Data Conversion on page 851.

Ladder Diagram

Operand	Туре	Format	Description
Source	DINT	array tag	Array to compare to the reference do not use CONTROL.POS in the subscript
Reference	DINT	array tag	Array to compare to the source do not use CONTROL.POS in the subscript
Result	DINT	array tag	Array to store the result do not use CONTROL.POS in the subscripts
Cmp. Control	CONTROL	structure	Control structure for the compare
Length	DINT	immediate	Number of bits to compare
Position	DINT	immediate	Current position in the source initial value is typically 0
Result control	CONTROL	structure	Control structure for the results
Length	DINT	immediate	number of storage locations in the result
Position	DINT	immediate	Current position in the result initial value is typically 0

CAUTION: Use different tags for the compare control structure and the result control structure. Using the same tag for both could result in unpredictable operation, possibly causing equipment damage and injury to personnel.

COMPARE Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the FBC
		instruction is enabled.
.DN	BOOL	The done bit is set when the FBC
		instruction compares the last bit in the
		Source and Reference arrays.
.FD	BOOL	The found bit is set each time the
		FBC instruction records a mismatch
		(one-at-a-time operation) or after
		recording all mismatches (all-per-scan
		operation).
.IN	BOOL	The inhibit bit indicates the FBC search
		mode.
		0 = all mode
		1 = one mismatch at a time mode
.ER	BOOL	The error bit is set either POS or LEN are
		invalid.
.LEN	DINT	The length value identifies the number of
		bits to compare.
.POS	DINT	The position value identifies the current
		bit.

RESULT Structure

Mnemonic	Data Type	Description
.DN	BOOL	The done bit is set when the Result array is full.
.LEN	DINT	The length value identifies the number of storage locations in the Result array.
.POS	DINT	The position value identifies the current position in the Result array.

Select the search mode

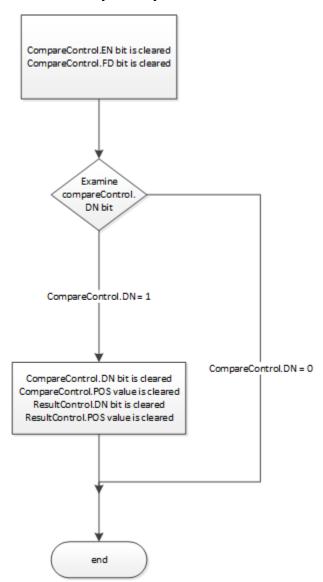
If you want to detect:	Select this mode:
One mismatch at a time	Set the .IN bit in the compare CONTROL structure.
	Each time the EnableIn goes from false to true, the FBC
	instruction searches for the next mismatch between the Source
	and Reference arrays. Upon finding a mismatch, the instruction
	sets the .FD bit, records the position of the mismatch, and stops
	executing.
All mismatches	Clear the .IN bit in the compare CONTROL structure.

If you want to detect:	Select this mode:
	Each time EnableIn goes from false to true, the FBC instruction searches for all mismatches between the Source and Reference
	arrays.

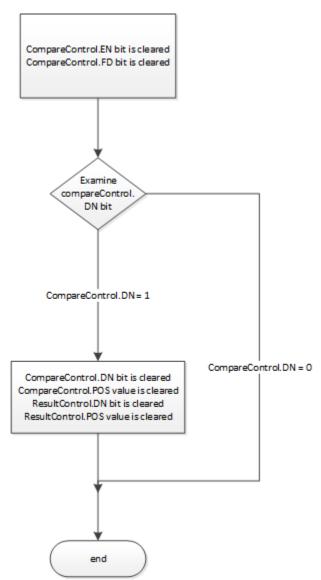
Affects Math Status Flags

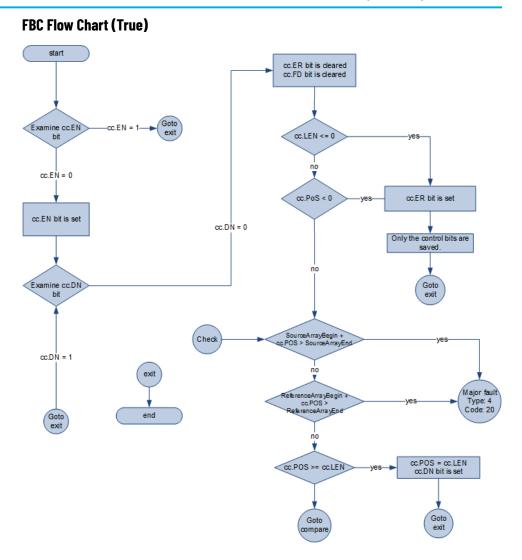
No

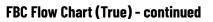
Major/Minor Faults

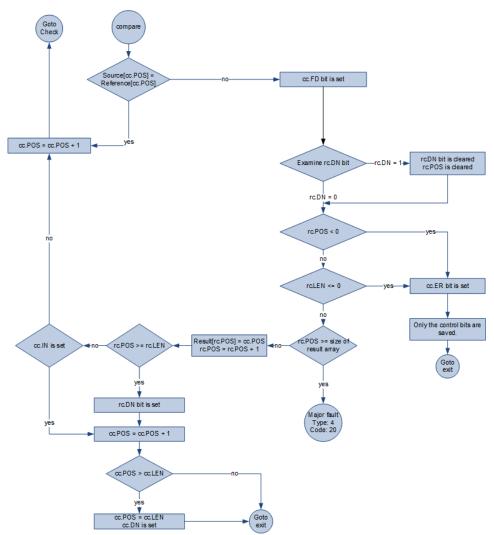

A major fault will occur if:	Fault type	Fault code
result.POS > size of result array	4	20

See Common Attributes for General Instructions on page 849 for operand related faults.

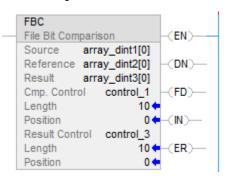

Execution

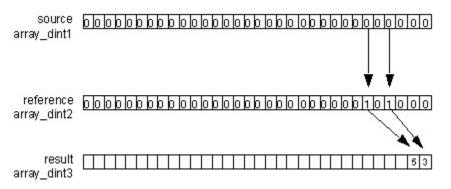

Condition/State	Action Taken	
Prescan	See FBC Flow Chart (Prescan)	
Rung-condition-in is false	See FBC Flow Chart (False)	
Rung-condition-in is true	See FBC Flow Chart (True)	
Postscan	N/A	


FBC Flow Chart (Prescan)



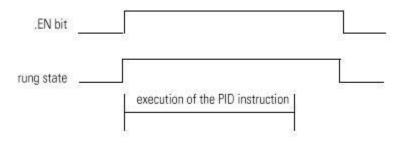
FBC Flow Chart (False)





Example

Ladder Diagram


Proportional Integral Derivative (PID)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The PID instruction controls a process variable such as flow, pressure, temperature, or level.

The PID instruction typically receives the process variable (PV) from an analog input module and modulates a control variable output (CV) on an analog output module in order to maintain the process variable at the desired setpoint.

The .EN bit indicates execution status. The .EN bit is set when the EnableIn transitions from false to true. The .EN bit is cleared when the EnableIn becomes false. The PID instruction does not use a .DN bit. The PID instruction executes every scan as long as the EnableIn is true.

Available Languages

Ladder Diagram

PID	
Proportional Integral	Derivative
PID	?
Process Variable	?
Tieback	?
Control Variable	?
PID Master Loop	?
Inhold Bit	?
Inhold Value	?
Setpoint	??
Process Variable	??
Output %	??

Structured Text

PID(PID, ProcessVariable, Tieback, ControlVariable, PIDMasterLoop, InHoldBit, InHoldValue);

Operands

There are data conversion rules for mixed data types within an instruction. See Data conversions on page 851.

Operand	Туре	Format	Description
PID	PID	structure	PID structure
Process variable	SINT	tag	Value you want to control
	INT		
	DINT		
	REAL		
Tieback	SINT	immediate	(optional)
	INT	tag	
	DINT		Output of a hardware hand/auto station which is bypassing the output of the controller. Enter 0 if you don't want to use this parameter
	REAL		
Control variable	SINT	tag	Value which goes to the final control device (valve, damper, etc.)
	INT		
	DINT		If you are using the deadband, the Control variable must be REAL or it will be forced to O

Operand	Туре	Format	Description
			when the error is within the deadband.
	REAL		
PID master loop	PID	Structure	Optional
			PID tag for the master PID
			If you are performing cascade control and this PID is a slave loop, enter the name of the master PID
			Enter 0 if you do not want to use this parameter
Inhold bit	BOOL	tag	Optional
			Current status of the inhold bit from a 1756 analog
			Output channel to support bumpless restart
Inhold value	SINT	tag	Optional
	INT		Data readback value from a 1756 analog output
	DINT		Channel to support bumpless restart
	REAL		Enter 0 if you don't want to use this parameter
Setpoint			Display only
			Current value of the setpoint
Process variable			Display only
			Current value of the scaled Process_Variable
Output %			Display only
			Current output percentage value

PID structure

Specify a unique PID structure for each PID instruction.

Mnemonic	Data Type	Description
.CTL	DINT	The .CTL member provides access to the
		status members (bits) in one, 32-bit word.
		Bits 07-15 are set by the PID instruction.
		See .CTL member.

Chapter 13 Special Instructions

Mnemonic	Data Type	Description
.SP	REAL	setpoint
.KP	REAL	Independent - proportional gain (unitless)
		Dependent - controller gain (unitless)
.KI	REAL	Independent - integral gain (1/sec)
		Dependent - reset time (minutes per repeat)
.KD	REAL	Independent - derivative gain (seconds)
		Dependent - rate time (minutes)
.BIAS	REAL	feedforward or bias %
.MAXS	REAL	maximum engineering unit scaling value
.MINS	REAL	minimum engineering unit scaling value
.DB	REAL	deadband engineering units
.SO	REAL	set
.MAXO	REAL	maximum output limit (% of output)
.MINO	REAL	minimum output limit (% of output)
.UPD	REAL	loop update time (seconds)
.PV	REAL	scaled PV value
.ERR	REAL	scaled error value
.0UT	REAL	output %
.PVH	REAL	process variable high alarm limit
.PVL	REAL	process variable low alarm limit
.DVP	REAL	positive deviation alarm limit
.DVN	REAL	negative deviation alarm limit
.PVDB	REAL	process variable alarm deadband
.DVDB	REAL	deviation alarm deadband
.MAXI	REAL	maximum PV value (unscaled input)
.MINI	REAL	minimum PV value (unscaled input)
.TIE	REAL	tieback value for manual control
.MAXCV	REAL	maximum CV value (corresponding to 100%)
.MINCV	REAL	minimum CV value (corresponding to 0%)
.MINITIE	REAL	minimum tieback value (corresponding to 100%)
.MAXTIE	REAL	maximum tieback value (corresponding to 0%)

Chapter 13 Special Instructions

Mnemonic	Data Type	Description
.DATA[17]	REAL	The .DATA member stores:
		DATA[0] - integral accumulation
		DATA[1] - derivative smoothing
		temporary value
		DATA[2] - previous .PV value
		DATA[3] - previous .ERR value
		DATA[4] - previous valid .SP value
		DATA[5] - percent scaling constant
		DATA[6]PV scaling constant
		DATA[7] - derivative scaling
		constant
		DATA[8] - previous .KP value
		DATA[9] - previous .KI value
		• .DATA[10] - previous .KD value
		• .DATA[11] - dependend gain .KP
		• .DATA[12] - dependend gain .KI
		• .DATA[13] - dependend gain .KD
		DATA[14] - previous .CV value
		• .DATA[15]CV descaling constant
		DATA[16] - tieback descaling
		constant

The .CTL member

Bit	Number	Description
.EN	31	
.CT	30	cascade type (0=slave; 1=master)
.CL	29	cascade loop (0=no; 1=yes)
.PVT	28	process variable tracking (0=no; 1=yes)
.DOE	27	derivative of (O=PV; 1=error)
.SWM	26	software mode (O=no-auto); 1=yes- sw
		manual)
.CA	25	control action (0=reverse (SP-PV);
		1=direct (PV- SP))
.MO	24	station mode (0=automatic; 1=manual)
.PE	23	PID equation (O=independent;
		1=dependent)
.NDF	22	derivative smoothing (0=no; 1=yes)
.NOBC	21	bias calculation (O=no; 1=yes)
.NOZC	20	zero crossing (0=no; 1=for deadband)
.INI	15	PID initialized (O=no; 1=yes)

.SPOR	14	setpoint out of range (0=no; 1=yes)
.0LL	13	CV is below minimum output value (0=no;
		1=yes)
.OLH	12	CV is above maximum output value (O=no;
		1=yes)
.EWD	11	error is within deadband (0=no; 1=yes)
.DVNA	10	error is alarmed low (0=no; 1=yes)
.DVPA	9	error is alarmed high (0=no; 1=yes)
.PVLA	8	PV is alarmed low (0=no; 1=yes)
.PVHA	7	PV is alarmed high (0=no; 1=yes)

Affects Math Status Flags

No

Major/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
UPD ≥ 0	4	35
setpoint out of range	4	36

See Common Attributes for General Instructions on page 849 for operand-related faults.

Using PID Instructions

After entering the PID instruction and specifying the PID structure, use the configuration tabs to specify how the PID instruction should function.

Specify Tuning

Select the **Tuning** tab. Changes take effect as soon as you select another field, select **OK**, select **Apply**, or press **Enter**.

In this field:	Do the following:
Setpoint (SP)	Enter a setpoint value (.SP).
Set output %	Enter a set output percentage (.SO). In software manual mode, this value is used for the output. In auto mode, this value displays the output %.
Output bias	Enter an output bias percentage (.BIAS).
Proportional gain (Kp)	Enter the proportional gain (.KP). For independent gains, it's the proportional gain (unitless). For dependent gains, it's the controller gain (unitless).
Integral gain (Ki)	Enter the integral gain (.KI). For independent gains, it's the integral gain (1/sec). For dependent gains, it's the reset time (minutes per repeat).

In this field:	Do the following:
Derivative time (Kd)	Enter the derivative gain (.KD).
	For independent gains, it's the derivative gain (seconds). For
	dependent gains, it's the rate time minutes).
Manual mode	Select either manual (.MO) or software manual (.SWM).
	Manual mode overrides software manual mode if both are
	selected.

Specify Configuration

Select the Configuration tab. You must select **OK** or **Apply** for any changes to take effect.

In this field:	Do the following:
PID equation	Select independent gains or dependent gains (.PE).
	Use independent when you want the three gains (P, I, and D) to
	operate independently. Use dependent when you want an overall
	controller gain that affects all three terms (P, I, and D).
Control action	Select either E=PV-SP or E=SP-PV for the control action (.CA).
Derivative of	Select PV or error (.DOE).
	Use the derivative of PV to reduce the risk of output spikes
	resulting from setpoint changes. Use the derivative of error
	for fast responses to setpoint changes when the algorithm can
	tolerate overshoots.
Loop update time	Enter the update time (.UPD) for the instruction.
CV high limit	Enter a high limit for the control variable (.MAXO).(1)
CV low limit	Enter a low limit for the control variable (.MINO).(1)
Deadband value	Enter a deadband value (.DB).
No derivative smoothing	Enable or disable this selection (.NDF).
No bias calculation	Enable or disable this selection (.NOBC).
No zero crossing in deadband	Enable or disable this selection (.NOZC).
PV tracking	Enable or disable this selection (.PVT).
Cascade loop	Enable or disable this selection (.CL).
Cascade type	If cascade loop is enabled, select either slave or master (.CT).

(1) When using the ladder-based PID instruction, if you set MAXO = MINO, the PID instruction resets these values to default. MAXO = 100.0 and MINO = 0.0

Specify Alarms

Select the **Alarms** tab. Select **OK** or **Apply** for any changes to take effect.

In this field:	Do the following:
PV high	Enter a PV high alarm value (.PVH).
PV low	Enter a PV low alarm value (.PVL).

In this field:	Do the following:
PV deadband	Enter a PV alarm deadband value (.PVDB).
Positive deviation	Enter a positive deviation value (.DVP).
Negative deviation	Enter a negative deviation value (.DVN).
Deviation deadband	Enter a deviation alarm deadband value (.DVDB).

Specify Scaling

Select the Scaling tab. You must select $\boldsymbol{\mathsf{OK}}$ or $\boldsymbol{\mathsf{Apply}}$ for any changes to take effect.

In this field:	Do the following:
PV unscaled maximum	Enter a maximum PV value (.MAXI) that equals the maximum unscaled value received from the analog input channel for the PV value.
PV unscaled minimum	Enter a minimum PV value (.MINI) that equals the minimum unscaled value received from the analog input channel for the PV value.
PV engineering units maximum	Enter the maximum engineering units corresponding to .MAXI (.MAXS)
PV engineering units minimum	Enter the minimum engineering units corresponding to .MINI (.MINS)
CV maximum	Enter a maximum CV value corresponding to 100% (.MAXCV).
CV minimum	Enter a minimum CV value corresponding to 0% (.MINCV).
Tieback maximum	Enter a maximum tieback value (.MAXTIE) that equals the maximum unscaled value received from the analog input channel for the tieback value.
Tieback minimum	Enter a minimum tieback value (.MINTIE) that equals the minimum unscaled value received from the analog input channel for the tieback value.
PID Initialized	If you change scaling constants during Run mode, turn this off to reinitialize internal descaling values (.INI).

Tip: When using the ladder-based PID instruction, if you set MAXO = MINO, the PID instruction resets these values to default. MAXO = 100.0 and MINO = 0.0.

Use PID Instructions

Setpoint - PID Equation Flow Rate Process Variable Control Variable Level Detector

PID closed-loop control holds a process variable at a desired set point. The illustration shows an example of a flowrate/fluid level.

In the above example, the level in the tank is compared against the setpoint. If the level is higher than the setpoint, the PID equation increases the control variable and causes the outlet valve from the tank to open; thereby decreasing the level in the tank.

The PID equation used in the PID instruction is a positional form equation with the option of using either independent gains or dependent gains. When using independent gains, the proportional, integral, and derivative gains affect only their specific proportional, integral, or derivative terms respectively. When using dependent gains, the proportional gain is replaced with a controller gain that affects all three terms. You can use either form of equation to perform the same type of control. The two equation types are merely provided to let you use the equation type with which you are most familiar.

Gains Option	Derivative Of
Dependent gains	Error (E)
(ISA standard)	Process variable (PV)
Independent gains	Error (E)
	Process variable (PV)

Where:

Variable	Description
КР	Proportional gain (unitless) Kp = Kc unitless
Ki	Integral gain (seconds -1)
	To convert between Ki (integral gain) and Ti (reset time), see
	Conversion Formula:
Kd	Derivative gain (seconds)
	To convert between Kd (derivative gain) and Td (rate time), use:
	Kd = Kc (Td) 60
КС	Controller gain (unitless)
Ті	Reset time (minutes/repeat)

Variable	Description
Td	Rate time (minutes)
SP	Setpoint
PV	Process variable
E	Error [(SP-PV) or (PV-SP)]
BIAS	Feedforward or bias
CV	Control variable
dt	Loop update time

Conversion Formula

$$K_i = \frac{K_C}{60T_i}$$

If you do not want to use a particular term of the PID equation, just set its gain to zero. For example if you want no derivative action, set Kd or Td equal to zero.

Anti-reset Windup and Bumpless Transfer From Manual To Auto (PID)

The PID instruction automatically avoids reset windup by preventing the integral term from accumulating whenever the CV output reaches its maximum or minimum values, as set by .MAXO and .MINO. The accumulated integral term remains frozen until the CV output drops below its maximum limit or rises above its minimum limit. Then normal integral accumulation automatically resumes.

The PID instruction supports two manual modes of control.

Manual Mode of Control	Description
Software manual (.SWM)	This mode is also known as set output mode and allows the user
	to set the output $\%$ from the software.
	The set output (.SO) value is used as the output of the loop. The
	set output value typically comes from an operator input from an
	operator interface device.
Manual (.MO)	This mode takes the tieback value, as an input, and adjusts
	its internal variables to generate the same value at the output
	The tieback input to the PID instruction is scaled to 0-100 $\%$
	according to the values of .MINTIE and .MAXTIE and is used as
	the output of the loop. The tieback input typically comes from
	the output of a hardware hand/auto station that is bypassing
	the output from the controller.
	Important: Manual mode overrides software manual mode if
	both mode bits are set on.

The PID instruction automatically provides bumpless transfers from software manual mode to auto mode or from manual to auto mode. The PID instruction back-calculates the value of the integral accumulation term required to make the CV output track either the set output (.SO) value in software manual mode or the tieback input in manual

mode. In this manner, when the loop switches to auto mode, the CV output starts off from the set output or tieback value and no 'bump' in output value occurs.

The PID instruction can also automatically provide a bumpless transfer from manual to auto even if integral control is not used (that is Ki = 0). In this case, the instruction modifies the .BIAS term to make the CV output track either the set output or tieback values. When automatic control is resumed, the .BIAS term maintains its last value. Disable back-calculation of the .BIAS term by setting the .NOBC bit in the PID data structure. If you set .NOBC true, the PID instruction no longer provides a bumpless transfer from manual to auto when integral control is not used.

Bumpless Restart (PID)

The PID instruction can interact with the 1756 analog output modules to support a bumpless restart when the controller changes from Program to Run mode or when the controller powers up.

When a 1756 analog output module loses communications with the controller or senses that the controller is in Program mode, the analog output module sets its outputs to the fault condition values you specified when you configured the module. When the controller then returns to Run mode or re-establishes communications with the analog output module, you can have the PID instruction automatically reset its control variable output equal to the analog output by using the Inhold bit and Inhold Value parameters on the PID instruction.

Instructions for setting a bumpless restart

Do this	Details
Configure the channel of the 1756 analog output module that	Select the Hold for initialization box on the properties page for
receives the control variable from the PID instruction	the specific channel of the module.
	This tells the analog output module that when the controller
	returns to Run mode or re-establishes communications with the
	module, the module should hold the analog output at its current
	value until the value sent from the controller matches (within
	0.1% of span) the current value used by the output channel.
	The output of of the channel ramps to the currently held output
	value by making use of the .BIAS term. This ramping is similar to
	auto bumpless transfer.
Enter the Inhold bit tag and Inhold Value tag in the PID	The 1756 analog output module returns two values for each
instruction	channel in its input data structure. The InHold status bit
	(.Ch2InHold, for example), when true, indicates that the analog
	output channel is holding its value. The Data readback value
	(.Ch2Data, for example) shows the current output value in
	engineering units.
	Enter the tag of the InHold status bit as the InHold bit parameter
	of the PID instruction. Enter the tag of the Data readback value
	as the Inhold Value parameter.
	When he Inhold bit is true, the PID instruction moves the Inhold
	Value into the Control variable output and re-initializes to
	support a bumpless restart at that value. When the analog
	output module receives this value back from the controller, it

Do this	Details
	turns off the InHold status bit, which allows the PID instruction
	to start controlling normally.

Cascading Loops (PID)

The PID cascades two loops by assigning the output in percent of the master loop to the setpoint of the slave loop. The slave loop automatically converts the output of the master loop into the correct engineering units for the setpoint of the slave loop, based on the slave loop's values for .MAXS and .MINS.

Ladder Diagram

PID		PID
Proportional Integra	al Derivative	Proportional Integral Derivative
PID	master	PID slave
Process Variable	pv_master	Process Variable pv_slave
Tieback	0	Tieback 0
Control Variable	cv_master	Control Variable cv_slave
PID Master Loop	0	PID Master Loop master
Inhold Bit	0	Inhold Bit 0
Inhold Value	0	Inhold Value 0
Setpoint	50.0 🕈	Setpoint 0.0 +
Process Variable	0.0 🕈	Process Variable 0.0 +
Output %	0.0 🖛	Output % 0.0 +

Controlling a Ratio (PID)

You can maintain two values in a ratio by using these parameters:

- Uncontrolled value
- Controlled value (the resultant setpoint to be used by the PID instruction)
- Ratio between these two values

ontrolled	ontrolled_fl	ow 0.0 +
	га	atio
pid	pid_2	
		0.0 🕈
ral Deriv	ral Derivati	ve
pid	pid_2	
pid_ pv_	pid_2 pv_2	
pid_ pv_ tieback_	pid_2 pv_2 tieback_2	
pid_ pv_ tieback_	pid_2 pv_2 tieback_2	
pid_ pv_ tieback_	pid_2 pv_2 tieback_2	
pid_ pv_ tieback_	pid_2 pv_2 tieback_2 cv_2	
pid_ pv_ tieback_	pid_2 pv_2 tieback_2 cv_2 0	
pid_ pv_ tieback_ cv_	pid_2 pv_2 tieback_2 cv_2 0 0 0	
pid_ pv_ tieback_ cv_ 0	pid_2 pv_2 tieback_2 cv_2 0 0 0 0	•••

Tip: Tip: To avoid locking up the PID with invalid internal floating point values, ensure the PV is not INF or NAN before invoking the instruction such as:

XIC (PC_timer.DN)
MOV(Local:0:1.Ch0Data, Local:0:1.Ch0Data)
XIO(S:V)
PID()

Structured Text

pid_2.sp := uncontrolled_flow * ratio

PID(pid_2,pv_2,tieback_2,cv_2,0,0,0);

Tip: Tip: To avoid locking up the PID with invalid internal floating point values, ensure the PV is not INF or NAN before invoking the instruction such as:

XIC (PC_timer.DN)

MOV(Local:0:1.ChOData, Local:0:1.ChOData)

XIO(S:V)

PID(...)

For this multiplication	Enter this value
Destination	Controlled value
Source A	Uncontrolled value
Source B	Ratio

Derivative Smoothing (PID)

The derivative calculation is enhanced by a derivative smoothing filter. This first order, low pass, digital filter minimizes large derivative term spikes caused by noise in the PV. This smoothing becomes more aggressive with larger values of derivative gain. You can disable derivative smoothing if your process requires very large values of derivative gain (Kd > 10, for example).

To disable derivative smoothing:

• Select No derivative smoothing on the Configuration tab, or set the .NDF bit in the PID structure.

Feedforward or Output Biasing (PID)

Feedforward a disturbance from the system by feeding the .BIAS value into the PID instruction's feedforward/bias value.

The feedforward value represents a disturbance fed into the PID instruction before the disturbance has a chance to change the process variable. Feedforward is often used to control processes with a transportation lag. For example, a feedforward value representing 'cold water poured into a warm mix' could boost the output value faster than waiting for the process variable to change as a result of the mixing.

A bias value is typically used when no integral control is used. In this case, the bias value can be adjusted to maintain the output in the range required to keep the PV near the setpoint.

PID Instruction Timing

The PID instruction and the sampling of the process variable need to be updated at a periodic rate. This update time is related to the physical process you are controlling. For very slow loops, such as temperature loops, an update time of once per second or even longer is usually sufficient to obtain good control. Somewhat faster loops, such as pressure or flow loops, may require an update time such as once every 250 ms. Only rare cases, such as tension control on an unwinder spool, require loop updates as fast as every 10 ms or faster.

Because the PID instruction uses a time base in its calculation, you need to synchronize execution of this instruction with sampling of the process variable (PV).

The easiest way to execute the PID instruction is to put the PID instruction in a periodic task. Set the loop update time (.UPD) equal to the periodic task rate and make sure that the PID instruction is executed every scan of the periodic task.

The easiest way to execute the PID instruction is to put the PID instruction in a periodic task. Set the loop update time (.UPD) equal to the periodic task rate and make sure that the PID instruction is executed every scan of the periodic task.

Relay Ladder

reconfigure[5]		MOV	
ONS		Move	
		Source	60
		Dest Local:4:C.Ch0Co	n fig.HAlarmLimit 10.0 ←
			10.0
	change_Halarm.EN	MSG	
		Message	-(EN)
		Message Control change_H	alarm(DN) -(ER)
	reconfigure[5]	[ONS]	[ONS] Move Source Dest Local:4:C.Ch0Con change_Halarm.EN MSG

Tip: To avoid locking up the PID with invalid internal floating point values, ensure the PV is not INF or NAN before invoking the instruction such as:

XIC (PC_timer.DN)

MOV(Local:0:1.ChOData, Local:0:1.ChOData)

XIO(S:V)

PID(...)

Structured Text

PID(TIC101,Local:0:I.Ch0Data,Local:0:I.Ch1Data, Local:1:0.Ch4Data,0,Local:1:I.Ch4InHold, Local:1:I.Ch4Data);

When using a periodic task, make sure that the analog input used for the process variable is updated to the processor at a rate that is significantly faster than the rate of the periodic task. Ideally, the process variable should be sent to the processor at least five to 10 times faster than the periodic task rate. This minimizes the time difference between actual samples of the process variable and execution of the PID loop. For example, if the PID loop is in a 250 ms periodic task, use a loop update time of 250 ms (.UPD = .25), and configure the analog input module to produce data at least about every 25 to 50 ms.

Another, somewhat less accurate, method of executing a PID instruction is to place the instruction in a continuous task and use a timer done bit to trigger execution of the PID instruction.

Relay Ladder

Tip: To avoid locking up the PID with invalid internal floating point values, ensure the PV is not INF or NAN before invoking the instruction such as:

XIC (PC_timer.DN)

MOV(Local:0:1.ChOData, Local:0:1.ChOData)

XIO(S:V)

PID(...)

Structured Text

PID_timer.pre := 1000

TONR(PID_timer);

IF PID_timer.DN THEN PID(TIC101,Local:0:I.Ch0Data,Local:0:I.Ch1Data,

Local:1:0.Ch0Data,0,Local:1:I.Ch0InHold,

Local:1:1.Ch0Data);

END_IF;

Tip: To avoid locking up the PID with invalid internal floating point values, ensure the PV is not INF or NAN before invoking the instruction such as:
 XIC (PC_timer.DN)
 MOV(Local:0:1.Ch0Data, Local:0:1.Ch0Data)
 XIO(S:V)

PID(...)

In this method, the loop update time of the PID instruction should be set equal to the timer preset. As in the case of using a periodic task, you should set the analog input module to produce the process variable at a significantly faster rate than the loop update time. You should only use the timer method of PID execution for loops with loop update times that are at least several times longer than the worst-case execution time for your continuous task.

The most accurate way to execute a PID instruction is to use the real time sampling (RTS) feature of the 1756 analog input modules. The analog input module samples its inputs at the real time sampling rate you configure when you set up the module. When the real time sample period of the module expires, it updates its inputs and updates a rolling timestamp (represented by the .RollingTimestamp member of the analog input data structure) produced by the module.

The timestamp ranges from 0 to 32,767 ms. Monitor the timestamp. When it changes, a new process variable sample has been received. Every time a timestamp changes, execute the PID instruction once. Because the process variable sample is driven by the analog input module, the input sample time is very accurate, and the loop update time used by the PID instruction should be set equal to the RTS time of the analog input module.

To make sure that you do not miss samples of the process variable, execute your logic at a rate faster than the RTS time. For example, if the RTS time is 250 ms, you could put the PID logic in a periodic task that runs every100 ms to make sure that you never miss a sample. You could even place the PID logic in a continuous task, as long as you make sure that the logic would be updated more frequently than once every 250 ms.

An example of the RTS method of execution is shown below. The execution of the PID instruction depends on receiving new analog input data. If the analog input module fails or is removed, the controller stops receiving rolling timestamps and the PID loop stops executing. You should monitor the status bit of the PV analog input and, if it shows bad status, force the loop into software manual mode, and execute the loop every scan. This lets the operator still manually change the output of the PID loop.

Relay Ladder

NEQ	PID
Not Equal	Proportional Integral Derivative
Source A Local:0:I.RollingTimestamp	PID TIC101
0	Process Variable Local:0:I.Ch0Data
Source B PreviousTimestamp	Tieback Local:0:I.Ch1Data
0	Control Variable Local:1:0.Ch0Data
	PID Master Loop 0
	Inhold Bit Local:1:I.Ch0InHold
.ocal:0:I.Ch0Fault TIC101.5	VM Inhold Value Local:1:I.Ch0Data
	Setpoint 0.0 ¢
ad ba	Process Variable 0.0 4
	Output % 0.0 +
	MOV
	Move
	Source Local:0:I.RollingTimestamp
	0
	Dest PreviousTimestamp

Structured Text

IF (Local:0:I.ChOFault) THEN TIC101.SWM [:=] 1;

ELSE TIC101.SWM := 0; END_IF;

IF (Local:0:I.RollingTimestamp<>PreviousTimestamp) OR (Local:0:I.ChOFault) THEN

PreviousTimestamp := Local:0:I.RollingTimestamp; PID(TIC101,Local:0:I.Ch0Data,Local:0:I.Ch1Data,


Local:1:0.Ch0Data,0,Local:1:I.Ch0InHold,

Local:1:I.ChOData);

END_IF;

Setting the Deadband (PID)

The adjustable deadband lets you select an error range above and below the setpoint where output does not change as long as the error remains within this range. This deadband allows you to control how closely the process variable matches the setpoint without changing the output. The deadband also helps to minimize wear and tear on your final control device.

Zero-crossing is deadband control that lets the instruction use the error for computational purposes as the process variable crosses into the deadband until the process variable crosses the setpoint. Once the process variable crosses the setpoint (error crosses zero and changes sign) and as long as the process variable remains in the deadband, the output does not change.

The deadband extends above and below the setpoint by the value you specify. Enter zero to inhibit the deadband. The deadband has the same scaled units as the setpoint. Use the deadband without the zero-crossing feature by selecting **No zero crossing for deadband** on the **Configuration** tab or set the .NOZC bit in the PID structure.

If you are using the deadband, the Control variable must be REAL or it is forced to zero when the error is within the deadband.

To inhibit the deadband:

• Enter zero (0).

The deadband has the same scaled units as the setpoint.

To use the deadband without the zero-crossing feature:

• Select No zero crossing for deadband on the Configuration tab or set the .NOZC bit in the PID structure.

If you are using the deadband, the Control variable must be REAL or it is forced to 0 when the error is within the deadband.

Using Output Limiting (PID)

Set an output limit (percentage of output) on the control output. When the instruction detects that the output has reached a limit, it sets an alarm bit and prevents the output from exceeding either the lower or upper limit.

Trigonometric Instructions

The trigonometric instructions evaluate arithmetic operations using trigonometric operations.

Available Instructions

Ladder Diagram, Function Block, and Structured Text

SIN on page 716	ATAN on page 702,	COS on page 711	TAN on page 721	ASIN on page 697	ACOS on page 691
	ATAN2 on page 702				

If you want to:	Use this instruction:
Take the sine of a value.	SIN
Take the cosine of a value.	COS
Take the tangent of a value.	TAN
Take the arc sine of a value.	ASIN
Take the arc cosine of a value.	ACOS
Take the arc tangent of a value.	ATAN
Take the two-argument arc tangent of a value.	ATAN2

You can mix data types, but loss of accuracy and rounding error might occur and the instruction takes more time to execute. Check the S:V bit to see whether the result was truncated.

The **bold** data types indicate optimal data types. An instruction executes faster and requires less memory if all the operands of the instruction use the same optimal data type, typically DINT or REAL.

A trigonometric instruction executes once each time the instruction is scanned as long as the rung-condition-in is true. If you want the instruction evaluated only once, use an ONS instruction to trigger the trigonometric instruction.

Arc Cosine (ACOS)

This table lists the controllers and applications that support this instruction.

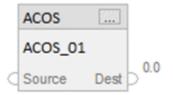
Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the ACOS instruction takes the arc cosine of the Source value and stores the result in the Destination (in radians).

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from ACS to ACOS.

Available Languages

These are the available languages for Arc Cosine (ACOS).


Ladder Diagram

ACOS	
Source	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use ACOS as an operator in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structured operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

Operand	Data Type	Data Type	Format	Description
	CompactLogix 5370,	CompactLogix 5380, Co		
	ControlLogix 5570,	mpactLogix 5480, Contr		
	Compact GuardLogix	olLogix 5580, Compact		
	5370, and GuardLogix	GuardLogix 5380,		
	5570 controllers	and GuardLogix 5580		
		controllers		
Source	SINT	SINT	Immediate	Value to convert to arc
	INT	INT	tag	cosine.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Destination	SINT	SINT	tag	Tag to store result of
	INT	INT		the instruction.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Туре	Format	Description
ACOS	FBD_MATH_ADVANCED	tag	ACS structure

FBD_MATH_ADVANCED Structure

Input Member	Data Type	Description
--------------	-----------	-------------

EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is true.
Source	REAL	Input to the trigonometric instruction.
Output Member	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Operand	Data Type	Description
	CompactLogix 5380, CompactLogix 5480,	
	ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	
Source	SINT	Value to convert to arc cosine.
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type	Description
	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	
Dest	REAL LREAL	Result of the function.

See FBD Functions on page 862.

Operator Aspects

The ACOS operator can be used in various RLL expressions. Similarly, the ACOS function is invoked in Structured Text statements. ACOS returns a floating point result containing the arc cosine of the Source. Depending on the context this value may then be type converted if appropriate.

Description

The ACOS instruction takes the arc cosine of the Source value and stores the result in the Destination (in radians). The ACOS operator/function computes the arc cosine of the Source and returns the floating point result. The Source must be greater than or equal to -1 and less than or equal to 1. The resulting value in the Destination is greater than or equal to 0 or less than or equal to pi (where pi = 3.141593). If Source is smaller than -1 or greater than 1 then Destination is set to NAN.

Affects Math Status Flags

Controllers	Affects Math Status Flag
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, see Math Status Flags on page 849.
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Dest = arc cosine value of the Source.
Postscan	N/A

Function Block Diagram

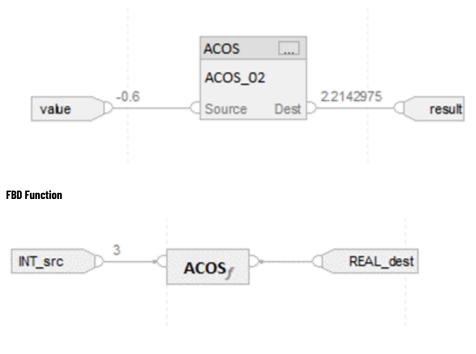
FBD Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false.	Set EnableOut to EnableIn.
EnableIn is true	Dest = arc cosine value of the Source.
	If overflow occurs
	Clear EnableOut to false.
	else
	Set EnableOut to true.

Instruction first scan	N/A
Instruction first run	N/A
Postscan	N/A

FBD Function

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = arc cosine value of the Source.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


Example

Ladder Diagram

Function Block Diagram

FBD Block

Structured Text

REAL_dest := ACOS(REAL_src);

Arc Sine (ASIN)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the Arc Sine (ASIN) instruction takes the arc sine of the Source value and stores the result in the Destination (in radians). The ASIN operator/function computes the arc sine of the Source and returns the floating point result. The Source must be greater than or equal to -1 and less than or equal to 1. The resulting value in the Destination is greater than or equal to -pi /2 and less than or equal to pi /2 (where pi = 3.141593). If Source is smaller than -1 or greater than 1 then Destination is set to NAN.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from ASN to ASIN.

Available Languages

Ladder Diagram

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use ASIN as an operator in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structured operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

Operand	Data Type	Data Type	Format	Description
operatiu	Data Type	Data Type	rumat	Description
	CompactLogix 5370,	CompactLogix 5380, Co		
	ControlLogix 5570,	mpactLogix 5480, Contr		
	Compact GuardLogix	olLogix 5580, Compact		
	5370, and GuardLogix	GuardLogix 5380,		
	5570 controllers	and GuardLogix 5580		
		controllers		
Source	SINT	SINT	Immediate	Value to convert to are
	INT	INT	tag	sine
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Destination	SINT	SINT	tag	Tag to store result of
	INT	INT		the instruction
	DINT	DINT		

REAL	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Function Block Diagram

FBD Block

Operand	Туре	Format	Description
ASN	FBD_MATH_ADVANCED	tag	ASN structure

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Operand	Data Type	Description
	CompactLogix 5380, CompactLogix 5480),
	ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	
Source	SINT	Value to convert to arc sine.
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type	Description
	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	
Dest	REAL LREAL	Result of the function.

See FBD Functions on page 862.

FBD_MATH_ADVANCED Structure

Input Member	Data Type	Description	
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is true.	
Source	REAL	Input to the trigonometric instruction	
Output Member	Data Type	Description	
EnableOut	BOOL	Indicates if the instruction executed without fault when it was enabled.	
Dest	REAL	Result of the instruction.	

Operator Aspects

The ASIN operator can be used in various RLL expressions. Similarly, the ASIN function is invoked in Structured Text statements. ASIN returns a floating point result containing the arc sine of the Source. Depending on the context this value may then be type converted if appropriate.

Affects Math Status Flags

Controllers	Affects Math Status Flag
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, see Math Status Flags on page 849.
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Dest = arc sine value of the Source.
Postscan	N/A

Function Block Diagram

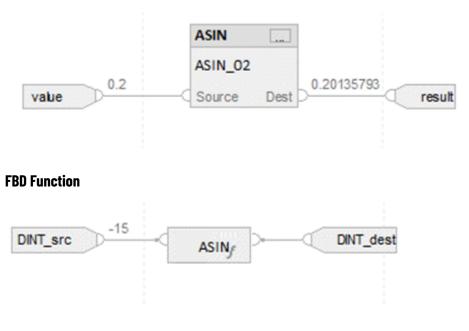
FBD Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn.
EnableIn is true	Dest = arc sine value of the Source.
	If overflow occurs
	Clear EnableOut to false.
	else
	Set EnableOut to true.
Instruction first scan	N/A
Instruction first run	N/A
Postscan	N/A

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = arc since value of the Source.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


Example

Ladder Diagram

ASIN	
Source	value
	0.2 🔷
Dest	result
0.	20135793 🔷

Function Block Diagram

FBD Block

Structured Text

REAL_dest := ASIN(REAL_src);

Arc Tangent (ATAN)

This table lists the controllers and applications that support this instruction.

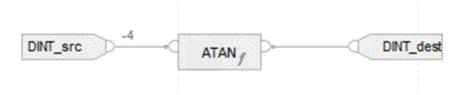
Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the ATAN instruction computes the arc tangent of the Source value and stores the result in the Destination (in radians). The ATAN operator/function computes the arc tangent of the Source and returns the floating point result. The resulting value in the Destination is greater than or equal to -pi/2 and less than or equal to pi/2 (where pi = 3.141593).

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from ATN to ATAN.

Available Languages

Ladder Diagram


Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	ATAN		
	ATAN_01		
<	Source	Dest	> 0.0

FBD Function

Structured Text

This instruction is not available in structured text.

Tip: Use ATAN as an operator in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Ladder Diagram

Operand	Data Type	Data Type	Format	Description
	CompactLogix 5370,	CompactLogix 5380, Co		
	ControlLogix 5570,	mpactLogix 5480, Contr		
	Compact GuardLogix	olLogix 5580, Compact		
	5370, and GuardLogix	GuardLogix 5380,		
	5570 controllers	and GuardLogix 5580		
		controllers		

Chapter 14 Trigonometric Instructions

Source	SINT	SINT	Immediate	Value to convert to arc
	INT	INT	tag	tangent.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Destination	SINT	SINT	tag	Tag to store the result
	INT	INT		of the instruction.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

Function Block

Operand	Туре	Format	Description
ATAN tag	FBD_MATH_ADVANCED	tag	ATAN structure

FBD_MATH_ADVANCED Structure

Input Member	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is true.
Source	REAL	Input to the trigonometric instruction.

Output Member	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Operand	Data Type Description
	CompactLogix 5380, CompactLogix 5480,
	ControlLogix 5580, Compact GuardLogix
	5380, and GuardLogix 5580 controllers
Source	SINT Value to convert to arc tangent.
	INT
	DINT
	LINT
	USINT
	UINT
	UDINT
	ULINT
	REAL
	LREAL

Output Operand (Right Pin)	Data Type	Description
	CompactLogix 5380, CompactLogix 5480,	
	ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	
Dest	REAL	Result of the function.
	LREAL	

See FBD Functions on page 862.

Operator Aspects

The ATAN operator can be used in various RLL expressions. Similarly, the ATAN function is invoked in Structured Text statements. ATAN returns a floating point result containing the arc tangent of the Source. Depending on the context this value may then be type converted if appropriate.

Affects Math Status Flags

Controllers	Affects Math Status Flag
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, see Math Status Flags on page 849.
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Dest = arc tangent value of the Source.
Postscan	N/A

Function Block Diagram

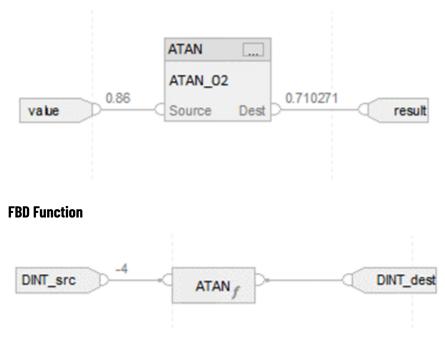
FBD Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn.
EnableIn is true	Dest = arc tangent value of the Source.
	If overflow occurs
	Clear EnableOut to false.
	else
	Set EnableOut to true.
Instruction first scan	N/A
Instruction first run	N/A
Postscan	N/A

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = arc tangent value of the Source.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


Example

Ladder Diagram

Function Block Diagram

FBD Block

Structured Text

REAL_dest := ATAN(REAL_src);

Two-Argument Arctangent (ATAN2)

This information applies to the Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The ATAN2 instruction takes the two-argument arc tangent of the Source values and stores the result in the Destination (in radians). The ATAN2 operator/function computes the arc tangent of the Source and returns the FLOAT result. The resulting value in the Destination is greater than or equal to -p and less than or equal to p (where p = 3.141593).

Available Languages

Ladder Diagram

ATAN2	ATAN2	
- Source Y	?	
	??	
Source X	?	
	??	
Dest	?	
	??	

Function Block Diagram

Function Block Diagram supports only the FBD function:

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use ATAN2 as an operator in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structured operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

Ladder Diagram

Operand	Data Type	Format	Description
	CompactLogix 5380,		
	CompactLogix 5480,		
	ControlLogix 5580, Compact		
	GuardLogix 5380, and		
	GuardLogix 5580 controllers		
Source Y	SINT	immediate	Source Y of ATAN2 Input

	INT	tag	
	DINT		
	LINT		
	USINT		
	UINT		
	UDINT		
	ULINT		
	REAL		
	LREAL		
Source X	SINT	immediate	Source X of ATAN2 Input
	INT	tag	
	DINT		
	LINT		
	USINT		
	UINT		
	UDINT		
	ULINT		
	REAL		
	LREAL		
Dest	REAL	tag	Tag to store result of the
	LREAL		instruction.

Function Block Diagram

FBD Function

Operand	Data Type	Description
	CompactLogix 5380, CompactLogix 5480,	
	ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	
Source Y	SINT	Source Y of ATAN2 Input
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	
Source Y	SINT	Source X of ATAN2 Input
	INT	
	DINT	
	LINT	
	USINT	

 UINT	
UDINT	
ULINT	
REAL	
LREAL	

Output Operand (Right Pin)	Data Type	Description
	CompactLogix 5380, CompactLogix 5480,	
	ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	
Dest	REAL	Result of the function.
	LREAL	

See FBD Functions on page 862.

Operator Aspects

The ATAN2 operator can be used in various RLL expressions. Similarly, the ATAN2 function is invoked in Structured Text statements. ATAN2 returns a FLOAT result containing the result of two argument arc tangent of the Source Y and Source X. Depending on the context, this value can then be type converted if appropriate.

Affects Math Status Flags

Controllers	Affects Math Status Flag
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, see Math Status Flags on page 849.
Compact GuardLogix 5380, and GuardLogix 5580 controllers	

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in. Dest = ATAN2(Source Y, Source X)
Postscan	N/A

Function Block Diagram

FBD Function

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = ATAN2(Source Y, Source X)
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

Examples

Ladder Diagram

ATAN2	
Source Y	srcY
	1.0 🕈
Source X	srcX
	2.0 🕈
Dest	Dest
	0.4636476 🕈

Function Block Diagram

FBD Function

Structured Text

REAL_dest := ATAN2(REAL_srcY, REAL_srcX);

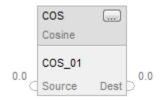
Cosine (COS)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The COS instruction takes the cosine of the Source value (in radians) and stores the result in the Destination. The COS operator/function computes the cosine of Source and returns the floating point result. The resulting value is always greater than or equal to -1 and less than or equal to 1.

Available Languages


Ladder Diagram

COS		1
Cosin	e	┝
Sourc	e ?	
	??	
Dest	?	
	??	

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use COS as an operator in an expression to compute the same result. Refer to <u>Structured Text Syntax</u> on page 879 for more information on the syntax of expressions and assignments within structured text.

Ladder Diagram

Operand	Data Type	Data Type	Format	Description
	CompactLogix 5370,	CompactLogix 5380,		
	ControlLogix 5570,	CompactLogix 5480,		
	Compact GuardLogix	ControlLogix 5580,		
	5370, and GuardLogix	Compact GuardLogix		
	5570 controllers	5380, and GuardLogix		
		5580 controllers		
Source	SINT	SINT	Immediate	Find the cosine of this
	INT	INT	tag	value.

	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Destination	SINT	SINT	tag	Tag to store the result.
	INT	INT		
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Туре	Format	Description
COS tag	FBD_MATH_ADVANCED	tag	COS structure

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Operand	Data Type	Description
Source	SINT	Value to convert to cosine
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type	Description

	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	
Dest	REAL LREAL	Result of the function.

See FBD Functions on page 862.

Operator Aspects

The COS operator can be used in various expressions. Similarly, the COS function is invoked in Structured Text statements. Both applications of COS return a floating point result containing the cosine of the Source. Depending on the context this value may then be type converted if appropriate.

FBD_MATH_ADVANCED Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.
		Default is set.
Source	REAL	Input to the trigonometric instruction.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if instruction is enabled.
Dest	REAL	Result of the math instruction.

Affects Math Status Flags

Controllers	Affects Math Status Flag
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, see Math Status Flags on page 849.
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.

	Dest = cosine value of the Source.
Postscan	N/A

Function Block Diagram

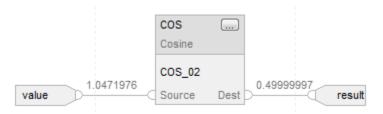
FBD Block

Action Taken
N/A
Set EnableOut to EnableIn.
Dest = cosine value of the Source.
If overflow occurs
Clear EnableOut to false
else
Set EnableOut to true.
N/A
N/A
N/A

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = cosine value of the Source.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


Example

Ladder Diagram

COS	
Cosine	
Source value	
1.0471976 🖛	
Dest result	
0.49999997 🖛	

Function Block Diagram

FBD Block

FBD Function

Structured Text

REAL_dest := COS(REAL_src);

Sine (SIN)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the SIN instruction takes the sine of the Source value (in radians) and stores the result in the Destination.

Available Languages

Ladder Diagram

SIN	
Sine	
Source	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use SIN as an operator in an expression to compute the same result. Refer to <u>Structured Text Syntax</u> on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

Ladder Diagram

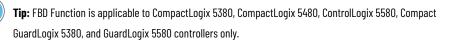
Operand	Data Type	Data Type	Format	Description
	CompactLogix 5370,	CompactLogix 5380,		
	ControlLogix 5570,	CompactLogix 5480,		
	Compact GuardLogix	ControlLogix 5580,		
	5370, and GuardLogix	Compact GuardLogix		
	5570 controllers	5380, and GuardLogix		
		5580 controllers		
Source	SINT	SINT	Immediate	Value to convert to sine.
	INT	INT	tag	
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Chapter 14 Trigonometric Instructions

Destination	SINT	SINT	tag	Tag to store the result
	INT	INT		of the instruction.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block


Operand	Туре	Format	Description
SIN tag	FBD_MATH_ADVANCED	tag	SIN structure

FBD_MATH_ADVANCED Structure

Input Parameter	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does
		not execute and outputs are not updated.
		Default is true.
Source	REAL	Input to the trigonometric instruction.

Output Parameter	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Operand	Data Type	Description
	CompactLogix 5380, CompactLogix 5480,	
	ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	
Source	SINT	Value to convert to sine.
	INT	
	DINT	
	LINT	
	USINT	

UINT	
UDINT	
ULINT	
REAL	
 LREAL	

Output Operand (Right Pin)	Data Type	Description
	CompactLogix 5380, CompactLogix 5480,	
	ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	
Dest	REAL	Result of the function.
	LREAL	

See FBD Functions on page 862.

Operator Aspects

The SIN operator can be used in various expressions. Similarly, the SIN function is invoked in Structured Text statements. Both applications of SIN return a floating point result containing the sine of the Source. Depending on the context, this value may then be type converted if appropriate.

Description

The SIN instruction takes the sine of the Source value (in radians) and stores the result in the Destination.

The SIN operator or function computes the sine of Source and returns the floating point result. The resulting value is always greater than or equal to -1 and less than or equal to 1.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, see Math Status Flags on page 849.
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A.
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.

	Dest = sine value of the Source.
Postscan	N/A

Function Block

Condition/State	Action Taken
Prescan	N/A
Tag.EnableIn is false.	Set EnableOut to EnableIn.
Tag.EnableIn is true	Dest = sine value of the Source.
	If overflow occurs
	Clear EnableOut to false.
	else
	Set EnableOut to true.
Instruction first scan	N/A
Instruction first run	N/A
Postscan	N/A

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = sine value of the Source.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

Example

Ladder Diagram

Sine Source value 0.7853982 Dest result	SIN	
0.7853982 🖛	Sine	
	Source value	
Dest result	0.7853982 🗧	
	Dest result	

Function Block Diagram

FBD Function

Structured Text

REAL_dest := SIN(REAL_src);

Tangent (TAN)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The TAN instruction takes the tangent of the Source value (in radians) and stores the result in the Destination. The TAN operator or function computes the tangent of Source and returns the floating point result.

Available Languages

Ladder Diagram

TAN	
Tangent	
Source	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	TAN		
	Tangent		
	TAN_01		
0.0	Source	Dest	> ^{0.0}

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use TAN as an operator in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

Ladder Diagram

Operand	Data Type	Data Type	Format	Description
	CompactLogix 5370,	CompactLogix 5380,		
	ControlLogix 5570,	CompactLogix 5480,		
	Compact GuardLogix	ControlLogix 5580,		
	5370, and GuardLogix	Compact GuardLogix		
	5570 controllers	5380, and GuardLogix		
		5580 controllers		
Source	SINT	SINT	Immediate	Value to convert to
	INT	INT	tag	tangent.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Destination	SINT	SINT	tag	Tag to store result of
	INT	INT		the instruction.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
TAN tag	FBD_MATH_ADVANCED	Structure	TAN structure

FBD_MATH_ADVANCED Structure

Input Parameter	Data Type	Description	
EnableIn	BOOL	Enable input. If false, the instruction doe	
		not execute and outputs are not updated.	
		Default is true.	
Source	REAL	Input to the trigonometric instruction.	

Output Parameter	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

	r	
Operand	Data Type	Description
	CompactLogix 5380, CompactLogix 5480,	
	ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	
Source	SINT	Value to convert to tangent.
	INT	
	DINT	
	LINT	
	USINT	

UINT	
UDINT	
ULINT	
REAL	
 LREAL	

Output Operand (Right Pin)	Data Type	Description
	CompactLogix 5380, CompactLogix 5480,	
	ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	
Dest	REAL	Result of the function.
_	LREAL	

Operator Aspects

The TAN operator can be used in various expressions. Similarly, the TAN function is invoked in Structured Text statements. Both applications of TAN return a floating point result containing the tangent of the Source. Depending on the context, this value may then be type converted if appropriate.

Affects Math Status Flags

Controllers	Affects Math Status Flag
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, see Math Status Flags on page 849.
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in. Dest = tangent value of the Source.
Postscan	N/A

Function Block Diagram

FBD Block

Condition/State	Action Taken
Prescan	N/A
Tag.EnableIn is false	Set EnableOut to EnableIn.
Tag.EnableIn is true	Dest = tangent value of the Source.
	If overflow occurs
	Clear EnableOut to false.
	else
	Set EnableOut to true.
Instruction first scan	N/A
Instruction first run	N/A
Postscan	N/A

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = tangent value of the Source.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

Example

Ladder Diagram

t	TAN Tangent
value	Source
2.0943952 🗧	
result	Dest
-1.7320505 🗧	

Function Block Diagram

FBD Block

FBD Function

Structured Text

REAL_dest := TAN(REAL_src);

Advanced Math Instructions

The advanced math instructions include these instructions:

Ladder Diagram and Function Block

Natural Log (LN) on page 732	Log Base 10 (LOG) on page 727	X to the Power of Y (EXPT) on page 737
------------------------------	-------------------------------	--

Structured Text

Natural Log (LN) on page 732	Log Base 10 (LOG) on page 727	X to the Power of Y (EXPT) on page 737
------------------------------	-------------------------------	--

If you want to:	Use this instruction:
Take the natural log of a value	LN
Take the log base 10 of a value	LOG
Raise a value to the power of another value	EXPT

Mixing data types can cause accuracy and rounding errors and cause the instruction to take longer to execute. Check the S:V bit to see whether the result was truncated.

The **bold** data types indicate optimal data types. An instruction executes faster and requires less memory if all the operands of the instruction use the same optimal data type, typically DINT or REAL.

An advanced math instruction executes once each time the instruction is scanned as long as the rung-condition-in is true. If you want the instruction evaluated only once, use an ONS instruction to trigger the math instruction.

Log Base 10 (LOG)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The Log Base 10 (LOG) instruction takes the log base 10 of the Source and stores the result in the Destination.

Available Languages

Ladder Diagram

LOG		
 Log Base 10	-	_
Source	?	
	??	
Dest	?	
	??	

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	LOG		
	Log Base	e 10	
	LOG_01		
0.0	Source	Dest	> ^{0.0}

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use LOG as an operator in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data conversions on page 851.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source	SINT INT DINT REAL	SINT INT DINT LINT USINT UDINT ULINT REAL LREAL	Immediate tag	Value for which the instruction finds the log.
Destination	SINT INT DINT REAL	SINT INT DINT LINT USINT UDINT ULINT REAL LREAL	tag	Tag to store the result of the instruction.

Function Block Diagram

FBD Block

Operand	Туре	Format	Description
LOG	FBD_MATH_ADVANCED	tag	LOG structure

FBD_MATH_ADVANCED Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated.
		Default is true.
Source	REAL	Value for which the instruction finds the
		log.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

	Data Type	
	CompactLogix 5380, CompactLogix	
Input Operands (Left Pin)	5480, ControlLogix 5580, Compact	Description
	GuardLogix 5380, and GuardLogix 5580	
	controllers	
Source	SINT	Value of which to find the log of this value
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	
	Data Type	
	CompactLogix 5380, CompactLogix	
Output Operand (Right Pin)	5480, ControlLogix 5580, Compact	Description
	GuardLogix 5380, and GuardLogix 5580	
	controllers	
Dest	REAL	Result of the function.
	LREAL	

Description

The LOG instruction takes the log base 10 of the Source and stores the result in the Destination. The Source must be greater than zero or a minor fault will occur.

Affects Math Status Flags

Controllers	Affects Math Status Flag
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	

Controllers	Affects Math Status Flag
CompactLogix 5370, ControlLogix 5570,	Yes
Compact GuardLogix 5370, and GuardLogix 5570 controllers	

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Dest = value of log base 10 of the Source.
Postscan	N/A.

Function Block Diagram

FBD Block

Condition/State	Action Taken	
Prescan	N/A	
Enableln is false.	Set EnableOut to EnableIn.	
EnableIn is true	Dest = value of natural log of the Source.	
	If overflow occurs	
	Clear EnableOut to false.	
	else	
	Set EnableOut to true.	
Instruction first scan	N/A	
Instruction first run	N/A	
Postscan	N/A	

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = value of log base 10 of the Source.

Condition/State	Action Taken
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

Examples

Ladder Diagram

	LOG	
_	Log Base 10	
	Source	value
		3.4 🕈
	Dest	result
	0.531	47894 🗲

Function Block Diagram

FBD Block

FBD Function

Structured Text

result := LOG(value);

Natural Log (LN)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The Natural Log (LN) instruction takes the natural log of the Source and stores the result in the Destination. The Source must be greater than zero or a minor fault will occur.

Available Languages

Ladder Diagram

	LN	
-	Natural Log	
	Source	?
		??
	Dest	?
		??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	LN		
	Natural Log		
	LN_01		
0.0	Source	Dest	> ^{0.0}

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use LN as an operator in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data conversions on page 851.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source	SINT	SINT	Immediate	Find the natural log of
	INT	INT	tag	this value.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Destination	SINT	SINT	tag	Tag to store the result
	INT	INT		of the instruction.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
LN	FBD_MATH_ADVANCED	tag	LN structure

FBD_MATH_ADVANCED Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does
		not execute and outputs are not updated.
		Default is true.

Input Members	Data Type	Description
Source	REAL	Value for which the instruction finds the
		natural log.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

	Data Type CompactLogix 5380, CompactLogix		
Input Operands (Left Pin)	5480, ControlLogix 5580, Compact	Description	
	GuardLogix 5380, and GuardLogix 5580		
	controllers		
Source	SINT	Value of which to find the natural log of	
	USINT	this value.	
	INT		
	UINT		
	DINT		
	UDINT		
	LINT		
	ULINT		
	REAL		
	LREAL		

Output Operand (Right Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Dest	REAL LREAL	Result of the function.

See FBD Functions on page 862.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

See Math status flags on page 849.

Major/Minor Faults

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in. Dest = value of natural log of the Source.
Postscan	N/A

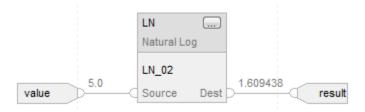
Function Block Diagram

FBD Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn.
EnableIn is true	Dest = value of natural log of the Source.
	If overflow occurs
	Clear EnableOut to false.
	else
	Set EnableOut to true.
Instruction first scan	N/A
Instruction first run	N/A
Postscan	N/A

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.


Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = value of natural log of the Source
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A

Examples

Ladder Diagram

LN	
Natural Lo	og
Source	value
	5.0 🗲
Dest	result
	1.609438 🗲

Function Block

FBD Function

Structured Text

result := LN(value);

X to the Power of Y (EXPT)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		

Architecture	Standard applications	Safety applications
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The X to the Power of Y (EXPT) instruction takes Source A (X) to the power of Source B (Y) and stores the result in the Destination.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from XPY to EXPT.

Available Languages

Ladder Diagram

EXPT	
X To Power C	Df Y
Source X	?
	??
Source Y	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use ** as an operator in an expression to compute the same result. Refer to *Structured Text Syntax* for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data conversions on page 851.

Ladder Diagram

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
Source A	SINT INT DINT REAL	SINT INT DINT LINT USINT UDINT UDINT REAL LREAL	immediate tag	value to exponentiate
Source B	SINT INT DINT REAL	SINT INT DINT LINT USINT UINT UDINT ULINT REAL LREAL	immediate tag	exponent
Dest	SINT	SINT	tag	Tag to store the result of the instruction.

Operand	Data Type CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Format	Description
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Data Type	Format	Description
EXPT	FBD_MATH	tag	EXPT structure

FBD_MATH Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is true.
SourceA	REAL	Value added to SourceB.
SourceB	REAL	Value added to SourceA.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

FBD Function

Input Operands (Left Pin)	Data Type CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Description
Source A (top)	SINT	Value to exponentiate
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	
Source B (bottom)	SINT	exponent
	USINT	
	INT	
	UINT	
	DINT	
	UDINT	
	LINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers Data Type	Description
Dest	DINT UDINT	Result of the function.
	LINT ULINT	
	REAL	

Description

The XPY instruction takes Source A (X) to the power of Source B (Y) and stores the result in the Destination. If Source A (X) is negative, Source B (Y) must be a non-fractional value or a minor fault will occur.

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

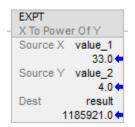
Major/Minor Faults

None specific to this instruction. See Index Through Arrays for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A.	
Rung-condition-in is false.	Set Rung-condition-out to Rung-condition-in.	
Rung-condition-in is true.	Set Rung-condition-out to Rung-condition-in. Dest = value of Source X to the power of Source Y.	
Postscan	N/A.	


Function Block Diagram

FBD Block


Condition/State	Action Taken	
Prescan	N/A	
Enableln is false	Set EnableOut to EnableIn.	
Enableln is true	Dest = value of Source X to the power of Source Y.	
	If overflow occurs	
	Clear EnableOut to false.	
	else	
	Set EnableOut to true.	
Instruction first scan	N/A	
Instruction first run	N/A	
Postscan	N/A	

Examples


Ladder Diagram

Function Block

FBD Function

Structured Text

result := value_1 ** value_2;

Math Conversion Instructions

The math conversion instructions convert values.

Available Instructions

Ladder Diagram and Function Bock

DEG on page 753	RAD on page 758	TO_BCD on page 745	BCD_TO on page 749	TRUNC on page 763
-----------------	-----------------	--------------------	--------------------	-------------------

Structured Text

DEG on page 753	RAD on page 758		TRUNC on page 763
If you want to		Use this instruction	
Convert radians into degrees.		DEG	
Convert degrees into radians.		RAD	
Convert an integer value to a BCD value.		TO_BCD	
Convert a BCD value to an integer value.		BCD_TO	
Remove the fractional part of a value.		TRUNC	

You can mix data types, but loss of accuracy and rounding error might occur and the instruction takes more time to execute. Check the S:V bit to see whether the result was truncated.

The **bold** data types indicate optimal data types. An instruction executes faster and requires less memory if all the operands of the instruction use the same optimal data type, typically DINT or REAL.

A math conversion instruction executes once each time the instruction is scanned as long as the rung-condition-in is true. If you want the instruction evaluated only once, use an ONS instruction to trigger the conversion instruction.

Convert to BCD (TO_BCD)

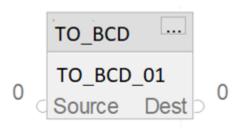
This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The TO_BCD instruction converts a decimal value ($0 \le$ Source \le 99,999,999) to a BCD value and stores the result in the Destination.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from TOD to TO_BCD.

Available Languages


Ladder Diagram

TO_BCD	
Source	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

Structured Text

This instruction is not available in structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data conversions on page

851.

Ladder Diagram

Operand	Data Type	Data Type	Format	Description
	CompactLogix 5370,	CompactLogix 5380, Co		
	ControlLogix 5570,	mpactLogix 5480, Contr		
	Compact GuardLogix	olLogix 5580, Compact		
	5370, and GuardLogix	GuardLogix 5380,		
	5570 controllers	and GuardLogix 5580		
		controllers		

Source	SINT	SINT	Immediate	Value to convert to BCD
	INT	INT	tag	$_{0} \leq Source \leq$
	DINT	DINT		99,999,999
		LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
Destination	SINT	SINT	tag	Tag to store the result
	INT	INT		
	DINT	DINT		
		LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		

Function Block Diagram

FBD Block

Operand	Туре	Format	Description
TO_BCD tag	FBD_CONVERT	Structure	TO_BCD structure

FBD_CONVERT Structure

Input Member	Data Type	Description
EnableIn	BOOL	Enable input. If cleared, the instruction does not execute and outputs are not updated.
		Default is set.
Source	DINT	Input to the conversion instruction.
		Valid = any integer

Output Member	Data Type	Description
EnableOut	BOOL	Enable output.
Dest	DINT	Result of the conversion instruction. Math
		status flags are set for this output.

Description

BCD is the Binary Coded Decimal number system that expresses individual decimal digits (0-9) in a 4-bit binary notation.

Source	Destination	Destination Type
Negative source < 0	0	
Source > 9,999, 999,999, 999,999	16#9999_9999_9999_9999	ULINT
Source > 9,999, 999,999, 999,999	16#9999_9999_9999_9999	LINT
Source > 99,999,999	16#9999_9999	UDINT
Source > 99,999,999	16#9999_9999	DINT
Source > 99,999,999	16#9999	UINT
Source > 99,999,999	16#9999	INT
Source > 99,999,999	16#99	USINT
Source > 99,999,999	16#99	SINT

Affects Math Status Flags

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Conditional, see <i>Math status flags</i> on page 849.
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

See Common Attributes for General Instructions on page 849 for operand related faults.

A minor fault will occur if:	Fault type	Fault code
feature is enabled and overflow detected and Source < 0	4	4
feature is enabled and overflow detected and Source > 99,999,999 / 9,999, 999,999, 999,999	4	4
feature is enabled and overflow detected	4	4

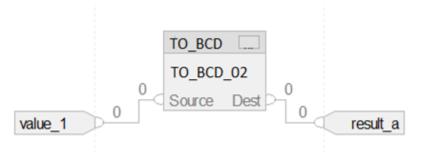
Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A.
Rung-condition-in is false	N/A.
Rung-condition-in is true	The controller converts the Source to BCD and places the result in the Destination.
Postscan	N/A.

Function Block Diagram

FBD Block


Condition/State	Action Taken	
Prescan	N/A	
Tag.EnableIn is false.	EnableOut is cleared to false	
Tag.EnableIn is true	Dest = the result of computation in BCD value.	
	If overflow occurs	
	Clear EnableOut to false.	
	else	
	Set EnableOut to true.	
Instruction first scan	N/A	
Instruction first run	N/A	
Postscan	N/A	

Example

Ladder Diagram

	TO_BCD	
-	Source	src
		22*
	Dest	dest
		34•

Function Block

Convert to Integer (BCD_TO)

This table lists the controllers and applications that support this instruction.

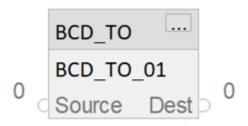
Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		

Architecture	Standard applications	Safety applications
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

The BCD_TO instruction converts a BCD value (Source) to a decimal value and stores the result in the Destination.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from FRD to BCD_TO.

Available Languages


Ladder Diagram

Function Block Diagram

Function Block Diagram supports this element:

FBD Block

Structured Text

This instruction is not available in structured text.

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data conversions on page 851.

Ladder Diagram

Operand	Data Type	Data Type	Format	Description
	CompactLogix 5370,	CompactLogix 5380, Co		
	ControlLogix 5570,	mpactLogix 5480, Contr		
	Compact GuardLogix	olLogix 5580, Compact		
	5370, and GuardLogix	GuardLogix 5380,		
	5570 controllers	and GuardLogix 5580		
		controllers		
Source	SINT	SINT	Immediate	value to convert to
	INT	INT	tag	decimal
	DINT	DINT		
		LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
Destination	SINT	SINT	tag	tag to store the result
	INT	INT		
	DINT	DINT		
		LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		

Function Block Diagram

FBD Block

Operand	Туре	Format	Description
FRD tag	FBD_CONVERT	Structure	FRD structure

FBD_CONVERT Structure

Input Parameter	Data Type	Description	
EnableIn	BOOL	Enable input. If cleared, the instruction	
		does not execute and outputs are not	
		updated.	
		Default is set.	
Source	DINT	Input to the conversion instruction.	
		Valid = any integer	

Output Parameters	Data Type	Description
EnableOut	BOOL	Enable output.

Dest	DINT	Result of the conversion instruction.

Description

The BCD_TO instruction converts a BCD value (Source) to a decimal value and stores the result in the Destination.

This formula is used for calculations when source is 32bits:

For example:

Source = 16#1234_567E

Destination = (1*10)+(2*10)+(3*10)+(4*10)+(5*10)+(6*10)+(7*10)+(14*10)=12345684

Affects Math Status Flags

Major/Minor Faults

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, see <i>Math status flags</i> on page 849.
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

None specific to this instruction. See Common Attributes for General Instructions on page 849 for operand related faults.

Execution

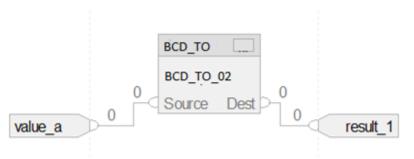
Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Dest = decimal value of source with BCD value.
Postscan	N/A

Function Block Diagram

FBD Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn.


EnableIn is true	Dest = decimal value of source with BCD value If overflow	
	occurs	
	Clear EnableOut to false.	
	else	
	Set EnableOut to true.	
Instruction first scan	N/A	
Instruction first run	N/A	
Postscan	N/A	

Examples

Ladder Diagram

BCD_TO	
Source	value_a
Dest	34 ◆ result 1
2000	22+

Function Block

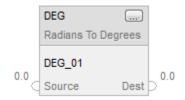
Degrees (DEG)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the DEG instruction converts the Source (in radians) to degrees and stores the result in the Destination.

Available Languages


Ladder Diagram

	DEG		
_	Radians To De	grees	
	Source	?	
		??	
	Dest	?	
		??	

Function Block Diagram

Function Block Diagram supports these elements:

Function Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use DEG as an operator in an expression to compute the same result. Refer to Structured Text Syntax on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data conversions on page 851.

Ladder Diagram

Operand	Data Type	Data Type	Format	Description
	CompactLogix 5370,	CompactLogix 5380, Co		
	ControlLogix 5570,	mpactLogix 5480, Contr		
	Compact GuardLogix	olLogix 5580, Compact		
	5370, and GuardLogix	GuardLogix 5380,		
	5570 controllers	and GuardLogix 5580		
		controllers		
Source	SINT	SINT	Immediate	Value to convert to
	INT	INT	tag	degrees
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Destination	SINT	SINT	tag	Tag to store the result
	INT	INT		
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Туре	Format	Description
DEG	FBD_MATH_ADVANCED	tag	DEG structure

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins) Dat	ta Туре	Description
--------------------------------	---------	-------------

	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	
Source	SINT	Value to convert to degrees
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	Data Type	Description
	CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	
Dest	REAL LREAL	Result of the function

See FBD Functions on page 862.

FBD_MATH_ADVANCED Structure

Input Parameter	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is True.
Source	REAL	Input to the conversion instruction.

Output Parameter	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

Description

The DEG instruction uses this algorithm:

Source*180/pi = Source*57.29578

Affects Math Status Flags

Major/Minor Faults

Controllers	Affects Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, see <i>Math status flags</i> on page 849.
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

None specific to this instruction. See Index through arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action taken	
Prescan	N/A	
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.	
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.	
	Dest = degree value of the Source.	
Postscan	N/A	

Function Block Diagram

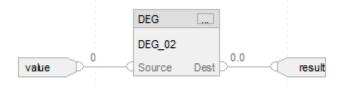
Function Block

Condition/State	Action Taken	
Prescan	N/A	
EnableIn is false	Set EnableOut to EnableIn.	
Enableln is true	Dest = degree value of the Source.	
	If overflow occurs	
	Clear EnableOut to false	
	else	
	Set EnableOut to true.	
Instruction first scan	N/A	
Instruction first run	N/A	
Postscan	N/A	

FBD Function

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = DEG(Source)
Instruction first run	N/A
Instruction first scan	N/A

Postscan	N/A
----------	-----


Examples

Ladder Diagram

DEG	
Source	value
	15.0 🕈
Dest	result
	859.4367 🗲

Function Block Diagram

FBD Block

FBD Function

Structured Text

REAL_dest := DEG(REAL_src);

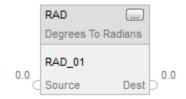
Radian (RAD)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the RAD instruction converts the Source (in degrees) to radians and stores the result in the Destination.

Available Languages


Ladder Diagram

	RAD	
_	Degrees To Ra	adians -
	Source	?
		??
	Dest	?
		??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use RAD as an operator in an expression to compute the same result. Refer to *Structured Text Syntax* on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data conversions on page 851.

Ladder Diagram

Operand	Data Type	Data Type	Format	Description
	CompactLogix 5370,	CompactLogix 5380, Co		
	ControlLogix 5570,	mpactLogix 5480, Contr		
	Compact GuardLogix	olLogix 5580, Compact		
	5370, and GuardLogix	GuardLogix 5380,		
	5570 controllers	and GuardLogix 5580		
		controllers		
Source	SINT	SINT	Immediate	Value to convert to
	INT	INT	tag	radians
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		
Destination	SINT	SINT	tag	Tag to store the result
	INT	INT		
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Туре	Format	Description
RAD	FBD_MATH_ADVANCED	tag	RAD structure

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Input Operands (Left Pins)	Data Type	Description

	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	
Source	SINT	Value to convert to radians
	INT	
	DINT	
	LINT	
	USINT	
	UINT	
	UDINT	
	ULINT	
	REAL	
	LREAL	

Output Operand (Right Pin)	CompactLogix 5380, CompactLogix 5480,	Description
	ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	
	Data Type	
Dest	REAL	Result of the function.
	LREAL	

FBD_MATH_ADVANCED Structure

Input Members	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does not execute and outputs are not updated. Default is true.
Source	REAL	Input to the conversion instruction.

Output Members	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	REAL	Result of the instruction.

Description

The RAD instruction uses this algorithm:

Deg2RadConvFactor=pi/180= 0.017453292

Destination = Source * Deg2RadConvFactor

Affects Math Status Flags

Controllers	Affected Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers	Conditional, see Math Status Flags on page 849.
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570 controllers	Yes

Major/Minor Faults

None specific to this instruction. See Index Through Arrays on page 863 for array-indexing faults.

Execution

Ladder Diagram

Condition/State	Action taken
Prescan	N/A
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Dest = radian value of the Source.
Postscan	N/A

Function Block Diagram

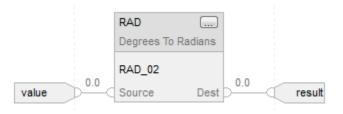
FBD Block

Condition/State	Action Taken
Prescan	N/A
EnableIn is false	Set EnableOut to EnableIn.
EnableIn is true	Dest = radian value of the Source.
	If overflow occurs
	Clear EnableOut to false.
	else
	Set EnableOut to true.
Instruction first scan	N/A
Instruction first run	N/A
Postscan	N/A

FBD Function

Condition/State	Action Taken
Prescan	N/A
Normal Scan	Dest = RAD(Source)
Instruction first run	N/A
Instruction first scan	N/A

F	Postscan	N/A


Example

Ladder Diagram

	RAD	
_	Degrees	To Radians
	Source	value
		45.0 🗢
	Dest	result
		0.7853982 🗲

Function Block Diagram

FBD Block

FBD Function

Structured Text

REAL_dest := RAD(REAL_src);

Truncate (TRUNC)

This table lists the controllers and applications that support this instruction.

Architecture	Standard applications	Safety applications
CompactLogix 5370, ControlLogix	Yes	No
5570, Compact GuardLogix 5370, and		
GuardLogix 5570 controllers		
CompactLogix 5380, CompactLogix 5480,	Yes	Yes
ControlLogix 5580, Compact GuardLogix		
5380, and GuardLogix 5580 controllers		

When enabled, the TRUNC instruction removes (truncates) the fractional part of the Source and stores the result in the Destination.

Tip: In Logix Designer version 36, the mnemonic for this instruction changed from TRN to TRUNC.

Available Languages

Ladder Diagram

TRUNC	
Truncate	
Source	?
	??
Dest	?
	??

Function Block Diagram

Function Block Diagram supports these elements:

FBD Block

	TRUNC		
	Truncate		
	TRUNC	_01	_
0.0	Source	Dest D	0

FBD Function

Tip: FBD Function is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only.

Structured Text

This instruction is not available in structured text.

Tip: Use TRUNC as an operator in an expression to compute the same result. Refer to *Structured Text Syntax* on page 879 for more information on the syntax of expressions and assignments within structured text.

Operands

IMPORTANT: Unexpected operation may occur if:

- Output tag operands are overwritten.
- Members of a structure operand are overwritten.
- Except when specified, structure operands are shared by multiple instructions.

There are data conversion rules for mixing numeric data types within an instruction. See Data conversions on page 851.

Ladder Diagram

Operand	Data Type	Data Type	Format	Description
	CompactLogix 5370,	CompactLogix 5380, Co		
	ControlLogix 5570,	mpactLogix 5480, Contr		
	Compact GuardLogix	olLogix 5580, Compact		
	5370, and GuardLogix	GuardLogix 5380,		
	5570 controllers	and GuardLogix 5580		
		controllers		
Source	SINT	REAL	immediate	Value to truncate.
	INT	LREAL	tag	
	DINT			
	REAL			
Destination	SINT	SINT	tag	Tag to store the result
	INT	INT		of the instruction.
	DINT	DINT		
	REAL	LINT		
		USINT		
		UINT		
		UDINT		
		ULINT		
		REAL		
		LREAL		

Function Block Diagram

FBD Block

Operand	Туре	Format	Description
TRUNC	FBD_TRUNCATE	tag	TRN structure

FBD Function

Input Operands (Left Pins)	Data Type	Description
	CompactLogix 5380, CompactLogix 5480,	
	ControlLogix 5580, Compact GuardLogix	
_	5380, and GuardLogix 5580 controllers	

Source	REAL LREAL	Value to truncate
Output Operand (Right Pin)	Data Type	Description

	CompactLogix 5380, CompactLogix 5480,	
	ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	
Dest	LINT	Result of the function.

See FBD Functions on page 862.

FBD_TRUNCATE Structure

Input Member	Data Type	Description
EnableIn	BOOL	Enable input. If false, the instruction does
		not execute and outputs are not updated.
		Default is true.
Source	REAL	Input to the conversion instruction.
		Input also takes SINT, INT, DINT, LINT,
		USINT, UINT, UDINT, ULINT and LREAL
		through input tag. But the integer type will
		be converted to REAL type first.
		Converting SINT or INT or USINT or UINT
		to REAL, there is no data precision lost.
		Converting 32-bit types (DINT, UDINT) to
		REAL, data precision could be lost. Both
		data types store data in 32 bits, but the
		REAL type uses some of its 32 bits to
		store the exponent value. If precision
		is lost, the controller takes it from the
		least-significant portion of the 32 bit
		types (DINT, UDINT).
		Converting 64 bit types (LINT, ULINT and
		LREAL) to REAL, data precision could be
		lost.

Output Member	Data Type	Description
EnableOut	BOOL	Indicates if the instruction executed
		without fault when it was enabled.
Dest	DINT	Result of the instruction.

Description

Truncating does not round the value; rather, the non-fractional part remains the same, regardless of the value of the fractional part.

Affects Math Status Flags

Controllers	Affected Math Status Flags
CompactLogix 5380, CompactLogix 5480, ControlLogix 5580,	Conditional, see <i>Math status flags</i> on page 849.
Compact GuardLogix 5380, and GuardLogix 5580 controllers	
CompactLogix 5370, ControlLogix 5570, Compact GuardLogix	Yes
5370, and GuardLogix 5570 controllers	

Major/Minor Faults

None specific to this instruction. See *Index through arrays* on page 863 for array-indexing faults.

Execution

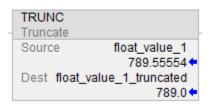
Ladder Diagram

Condition/State	Action Taken
Prescan	N/A.
Rung-condition-in is false	Set Rung-condition-out to Rung-condition-in.
Rung-condition-in is true	Set Rung-condition-out to Rung-condition-in.
	Dest = Truncated value of the Source.
Postscan	N/A.

Function Block Diagram

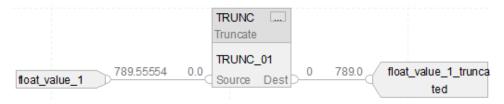
FBD Block

Condition/State	Action Taken
Prescan	N/A
Enableln is false	Set EnableOut to EnableIn.
EnableIn is true	Dest = Truncated value of the Source.
	If overflow occurs
	Clear EnableOut to false.
	else
	Set EnableOut to true.
Instruction first scan	N/A
Instruction first run	N/A
Postscan	N/A


FBD Function

Condition/State	Action Taken
Prescan	N/A

Normal Scan	Dest = Truncated value of the Source.
Instruction first run	N/A
Instruction first scan	N/A
Postscan	N/A


Example

Ladder Diagram

Function Block Diagram

FBD Block

FBD Function

Structured Text

REAL_dest := TRUNC(REAL_src);

ASCII Serial Port Instructions

Use the ASCII serial port instructions to read and write ASCII characters.

IMPORTANT: The ASCII serial port instructions are included in Logix Designer versions 36 and earlier. They are not included in versions 37 and later.

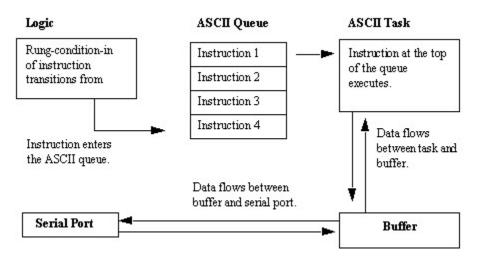
IMPORTANT: To use the ASCII serial port instructions, you must configure the serial port of the controller. Refer to the Logix 5000 Controller Common Procedures manual (publication 1756-PM001) for more information.

Tip: ASCII Serial Port instructions (AWT, AWA, ARD, ARL, ABL, ACB, AHL, ACL) are not available for projects using controllers that do not have serial ports.

Available Instructions

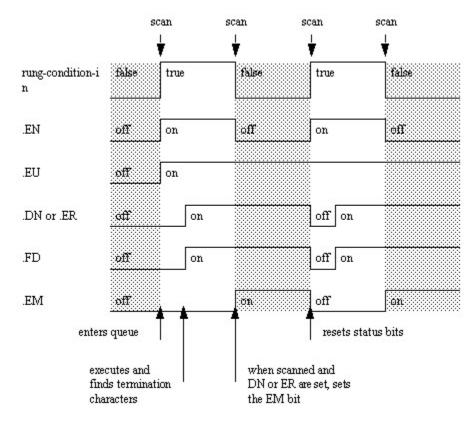
Ladder Diagram and Structured Text

ASCII Test for	ASCII Chars in	ASCII Clear	ASCII	ASCII Read	ASCII Read	ASCII Write	ASCII Write
Buffer Line	Buffer (ACB)	Buffer (ACL)	Handshake	(ARD) on page	Line (ARL) on	Append (AWA)	(AWT) on page
(ABL) on page	on page 771	on page 774	Lines (AHL) on	781	page 785	on page 798	793
790			page 776				


Function Block

Not available

If you want to:	Use this instruction:
Check for data that contains termination characters	ABL
Check for the required number of characters before reading the	ACB
buffer	
Clear the buffer. For example, remove old data from the buffer	ACL
at start-up, or synchronize the buffer with a device.	
Clear out ASCII serial port instructions that are currently	
executing or are in the queue.	
Obtain the status of the serial port control lines. For example,	AHL
cause a modem to hang up.	
Turn the DTR signal on or off	
Turn the RTS signal on or off	
Read a fixed number of characters. For example, read data from	ARD
a device that sends the same number of characters with every	
transmission)	


Read a varying number of characters, up to and including the	ARL
first set of termination characters. For example, read data from	
a device that sends a varying number of characters with every	
transmission.	
Send characters and automatically append one or two	AWA
additional characters to mark the end of the data. For	
example, send messages that always use the same termination	
character(s).	
Send characters. For example, send messages that use a variety	AWT
of termination characters.	

ASCII serial port instructions execute asynchronous to the scan of the logic:

Each ASCII instruction, except for the ACL instruction, uses a SERIAL_PORT_CONTROL structure. The SerialPort Control operand:

- controls the execution of the instruction
- provides status information about the instruction ASCII instructions execute asynchronous to the scan of the logic:

The bits of the SerialPort Control operand provide status information:

ASCII Chars in Buffer (ACB)

This instruction is compatible with Studio 5000 Logix Emulate controllers only. This instruction is not compatible with emulated 5580 controllers.

The ASCII Chars in Buffer (ACB) instruction counts the characters in the buffer.

Tip: ASCII Serial Port instructions (AWT, AWA, ARD, ARL, ABL, ACB, AHL, ACL) are not available for controllers that do not have serial ports.

Available Languages

Ladder Diagram

ACB		
 ASCII Chars in Buffer		-(EN)
Channel	?	-(DN)
SerialPort Control	?	-(ER)
Character Count	?	

Function Block

This instruction is not available in function block.

Structured Text

ACB(Channel,SerialPortControl);

Operands

Ladder Diagram

Operand	Туре	Format	Description
Channel	DINT	immediate tag	0
SerialPort Control	SERIAL_PORT_CONTROL	tag	tag that controls the operation
Character Count	DINT	immediate	0
			During execution, displays the
			number of characters in the
			buffer, including the first set
			of termination characters.

Structured Text

Operand	Туре	Format	Description
Channel	DINT	immediate tag	0
SerialPort Control	SERIAL_PORT_CONTROL	tag	tag that controls the operation
Character Count	DINT	immediate	0
			During execution, displays the
			number of characters in the
			buffer, including the first set
			of termination characters.

You can specify the Character Count value by accessing the .POS member of the SERIAL_PORT_CONTROL structure, rather than by including the value in the operand list.

See Structured Text Syntax for more information on the syntax of expressions within structured text.

SERIAL_PORT_CONTROL Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the instruction is enabled.
.EU	BOOL	The queue indicates the instruction entered the ASCII queue.
.DN	BOOL	The done bit indicates when the instruction is done, but it is asynchronous to the logic scan.
.RN	BOOL	The run bit indicates the instruction is executing.

Chapter 17 ASCII Serial Port Instructions

.EM	BOOL	The empty bit indicates the instruction is done, but it is synchronous to the logic scan.
.ER	BOOL	The error bit indicates when the instruction fails (errors).
.FD	BOOL	The found bit indicates the instruction found a character.
.POS	DINT	The position determines the number of characters in the buffer, up to and including the first set of termination characters.
.ERROR	DINT	The error contains a hexadecimal value that identifies the cause of an error.

Description

The ACB instruction counts the characters in the buffer.

To program the ACB instruction, follow these guidelines:

• Configure the serial port of the controller for User mode.

This is a transitional instruction:

- In ladder diagram, toggle the EnableIn from cleared to set each time the instruction should execute.
- In structured text, condition the instruction so that it only executes on a transition

Math Status Flags

No

Fault Conditions

None specific to this instruction. See Common Attributes for operand-related faults.

Execution

Ladder Diagram

Condition	Ladder Diagram Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes when EnableIn toggles from cleared to
	set.
Postscan	N/A

Structured Text

Condition	Structured Text Action

Prescan	N/A	
Normal execution	The instruction executes when EnableIn toggles from cleared to	
	set.	
Postscan	N/A	

Example

Ladder Diagram

bar_code_count.EN	ACB ASCII Chars in Buffer Channel 0 SerialPort Control bar_code_count	-(EN)
	Character Count 0 4	

Structured Text

ACB(0,bar_code_count);

ASCII Clear Buffer (ACL)

This instruction is compatible with Studio 5000 Logix Emulate controllers only. This instruction is not compatible with emulated 5580 controllers.

The ASCII Clear Buffer (ACL) instruction immediately clears the buffer and ASCII queue.

Tip: ASCII Serial Port instructions (AWT, AWA, ARD, ARL, ABL, ACB, AHL, ACL) are not available for controllers that do not have serial ports.

Available Languages

Ladder Diagram

ACL		
ASCII Clear Buffer	-	
Channel	?	
Clear Serial Port Read	?	
Clear Serial Port Write	?	

Function Block

This instruction is not available in function block.

Structured Text

ACL(Channel,ClearSerialPortRead,ClearSerialPortWrite);

Operands

Ladder Diagram

Operand	Туре	Format	Description
Channel	DINT	immediate	0
		tag	
Clear Serial Port Read	BOOL	immediate	To empty the buffer and
		tag	remove ARD and ARL
			instructions from the queue,
			enter 1.
Clear Serial Port Write	BOOL	immediate	To remove AWA and AWT
			instructions from the queue,
		tag	enter 1.

Structured Text

Operand	Туре	Format	Description
Channel	DINT	immediate	0
		tag	
Clear Serial Port Read	BOOL	immediate tag	To empty the buffer and remove ARD and ARL instructions from the queue,
			enter 1.
Clear Serial Port Write	BOOL	immediate	To remove AWA and AWT instructions from the queue,
		tag	enter 1.

See Structured Text Syntax for more information on the syntax of expressions within structured text.

Description

The ACL instruction immediately performs one or both of the following actions:

- Clears the buffer or characters and clears the ASCII queue of read instructions
- Clears the ASCII queue of write instructions To program the ACL instructions, follow these guidelines:

Configure the serial port of the controller:

If your application:	Then:
Uses ARD or ARL instruction	Select User mode
Does not use ARD or ARL instructions	Select either System or User mode

To determine if an instruction was removed from the queue or cancelled, examine the following of the appropriate instruction:

- .ER bit is set
- .ERROR member is 16#E

Affects Math Status Flags

No

Fault Conditions

None specific to this instruction. See Common Attributes for operand-related faults.

Execution

Ladder Diagram

Condition	Ladder Diagram Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Structured Text Action
Prescan	N/A
Normal execution	The instruction clears the specified instruction and buffer(s)
Postscan	N/A

Example

Ladder Diagram

S:FS	ACL	
[ASCII Clear Buffer	
	Channel	0
	Clear Serial Port Read	1
	Clear Serial Port Write	1

Structured Text

IF (osri_1.OutputBit THEN

ACL(0,0,1);

END_IF;

ASCII Handshake Lines (AHL)

This instruction is compatible with Studio 5000 Logix Emulate controllers only. This instruction is not compatible with emulated 5580 controllers.

The ASCII Handshake Lines (AHL) instruction obtains the status of control lines and turns on or off the DTR and RTS signals.

Tip: ASCII Serial Port instructions (AWT, AWA, ARD, ARL, ABL, ACB, AHL, ACL) are not available for controllers that do not have serial ports.

Available Languages

Ladder Diagram

Function Block

This instruction is not available in function block.

Structured Text

AHL(Channel,ANDMask,ORMask,SerialPortControl);

Operands

Ladder Diagram

Operand	Туре	Format	Description	
Channel	DINT	immediate tag	0	
ANDMask	DINT	immediate tag	Refer to the Description	
ORMask	DINT	immediate tag	-	
SerialPort Control	SERIAL_PORT_CONTROL	tag	Tag that controls the ope	ration
Channel Status	DINT	immediate	0	
(Decimal)			During execution, display	rs the status of the control
			lines.	
			For the status of this	Examine this bit:
			control line:	
			CTS	0
			RTS	1
			DSR	2
			DCD	3
			DTR	4
			Received the XOFF	5
			character	

Operand	Туре	Format	Description	Description	
Channel	DINT	immediate tag	0	0	
ANDMask	DINT	immediate tag	Refer to the Description	Refer to the Description	
ORMask	DINT	immediate tag			
SerialPort Control	SERIAL_PORT_CONTROL	tag	Tag that controls the op	eration	
Channel Status	DINT	immediate	0		
(Decimal)			During execution, displa	ays the status of the control	
			lines.		
			For the status of this	Examine this bit:	
			control line:		
			CTS	0	
			RTS	1	
			DSR	2	
			DCD	3	
			DTR	4	
			Received the XOFF	5	
			character		

Structured Text

You can specify the Channel Status value by accessing the .POS member of the SERIAL_PORT_CONTROL structure, rather than by including the value in the operand list.

See Structured Text Syntax for more information on the syntax of expressions within structured text.

SERIAL_PORT_CONTROL Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the instruction is enabled.
.EU	BOOL	The queue bit indicates the instruction enter the ASCII queue.
.DN	BOOL	The done bit indicates the instruction is done, but it is asynchronous to the logic scan.
.RN	BOOL	The run bit indicates the instruction is executing.
.EM	BOOL	The empty bit indicates the instruction is done, but it is synchronous to the logic scan.
.ER	BOOL	The error bit indicates when the instruction fails (errors).

.FD	BOOL	The found bit does not apply to this instruction.
.POS	DINT	The position determines the number of characters in the buffer, up to and including the first set of termination characters.
.ERROR	DINT	The error contains a hexadecimal value that identifies the cause of an error.

Description

The AHL instruction can:

- Obtain the status of the control lines of the serial port
- Turn the Data Terminal Ready (DTR) signal on or off
- Turn the Request to Send (RTS) signal on or off

To program the AHL instruction, follow these guidelines:

Configure the serial port of the controller:

If your application:	Then:
Uses ARD or ARL instruction	Select User mode
Does not use ARD or ARL instructions	Select either System or User mode

Use the following table to select the correct values for the ANDMask and ORMask operands:

To turn DTR:	And turn RTS:	Enter this	And enter this
		ANDMask value:	ORMask value:
Off	Off	3	0
		on	1
		unchanged	1
On	Off	2	1
		on	0
		unchanged	0
Unchanged	Off	2	0
		on	0
		unchanged	0

This is a transitional instruction:

- In ladder diagram, toggle the EnableIn from cleared to set each time the instruction should execute.
- In structured text, condition the instruction so that it only executes on a transition

Affects Math Status Flags

No

Fault Conditions

Туре	Code	Cause	Recovery Method
4	57	The AHL instruction failed to	Change the Control Line
		execute because the serial	setting of the serial port
		port is set to no handshaking	or
			Delete the AHL instruction

Execution

Ladder Diagram

Condition	Ladder Diagram Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes when rung condition in toggles from cleared to set.
Postscan	N/A

Structured Text

Condition	Structured Text Action
Prescan	N/A
Normal execution	The instruction executes when rung condition in toggles from cleared to set.
Postscan	N/A

Example

Ladder Diagram

get_control_line_status	AHL ASCII Handshake Lines	-(EN)
	Channel	0
	AND Mask	0 -(DN)
	OR Mask	0 -(ER)
	SerialPort Control s Channel Status(Decimal)	erial_port 29 ←

Structured Text

osri_1.InputBit := get_control_line_status;

OSRI(osri_1);

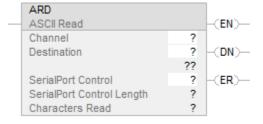
IF (osri_1.OutputBit) THEN

AHL(0,0,0,serial_port);

END_IF;

ASCII Read (ARD)

This instruction is compatible with Studio 5000 Logix Emulate controllers only. This instruction is not compatible with emulated 5580 controllers.


The ASCII Read (ARD) instruction removes characters from the buffer and stores them in the Destination.

Tip: ASCII Serial Port instructions (AWT, AWA, ARD, ARL, ABL, ACB, AHL, ACL) are not available for controllers that do not have serial ports.

Available Languages

Ladder Diagram

Function Block

This instruction is not available in function block.

Structured Text

ARD(Channel,Destination,SerialPortControl);

Operands

Ladder Diagram

Operand	Туре	Format	Description	Notes
Channel	DINT	immediate	0	
		tag		
Destination	String type	tag	tag into which the	If you want to compare,
	SINT		characters are moved	convert, or manipulate
			(i.e., read):	the characters, enter a
	INT		For a string type, enter	string type tag.
	DINT		the name of the tag.	String types are:
			For a SINT, INT, or DINT	default STRING data
			array, enter the first	type
			element of the array.	

				any new string type you create
Serial Port Control	SERIAL_PORT_CONTROL	tag	tag that controls the operation	
Serial Port Control Length	DINT	immediate	number of characters to move to the destination (read)	The Serial Port Control Length must be less than or equal to the size of the Destination. If you want to set the Serial Port Control Length equal to the size of the Destination, enter 0.
Characters Read	DINT	immediate	0	During execution, displays the number of characters in the buffer, including the first set of termination characters.

Structured Text

Operand	Туре	Format	Description	Notes
Channel	DINT	immediate	0	
		tag		
Destination	String type	tag	tag into which the	If you want to compare,
	OINT		characters are moved	convert, or manipulate
	SINT		(i.e., read):	the characters, enter a
	INT		For a string type, enter	string type tag.
	DINT		the name of the tag.	String types are:
	DINT		For a SINT, INT, or DINT	default STRING data
			array, enter the first	type
			element of the array.	any new string type you
				create
Serial Port Control	SERIAL_PORT_CONTROL	tag	tag that controls the	
			operation	
Serial Port Control	DINT	immediate	number of characters to	The Serial Port Control
Length			move to the destination	Length must be less
			(read)	than or equal to the size
				of the Destination.
				If you want to set the
				Serial Port Control
				Length equal to the size
				of the Destination, ente
				0.

Characters Read	DINT	immediate	0	During execution,
				displays the number of
				characters in the buffer,
				including the first set of
				termination characters.

You can specify the Serial Port Control Length and the Characters Read values by accessing the .LEN and .POS members of the SERIAL_PORT_CONTROL structure, rather than by including the values in the operand list.

See Structured Text Syntax for more information on the syntax of expressions within structured text.

SERIAL_PORT_CONTROL Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the instruction is enabled.
.EU	BOOL	The queue bit indicates the instruction entered the ASCII queue.
.DN	BOOL	The done bit indicates the instruction is done, but it is asynchronous to the logic scan.
.RN	BOOL	The run bit indicates the instruction is executing.
.EM	BOOL	The empty bit indicates the instruction is done, but it is synchronous to the logic scan.
.ER	BOOL	The error bit indicates when the instruction fails (errors).
.FD	BOOL	The found bit does not apply to this instruction.
.LEN	DINT	The length indicates the number of characters to move to the destination (i.e., read).
.POS	DINT	The position displays the number of characters that were read.
.ERROR	DINT	The error contains a hexadecimal value that identifies the cause of an error.

Description

٠

The ARD instruction removes the specified number of characters from the buffer and stores them in the Destination.

- The ARD instruction continues to execute until it removes the specified number of characters (Serial Port Control Length operand).
- While the ARD instruction is executing, no other ASCII serial port instruction executes.

To program the ARD instruction, follow these guidelines:

- 1. Configure the serial port of the controller for User mode.
- Use the result of an ACB instruction to trigger the ARD instruction.
 This prevents the ARD instruction from holding up the queue while it waits for the required number of characters. Refer to the ARD example below for more information.
- 3. This is a transitional instruction:

In ladder diagram, toggle the EnableIn from cleared to set each time the instruction should execute. In structured text, condition the instruction so that it only executes on a transition

4. To trigger a subsequent action when the instruction is done, examine the .EM bit.

Affects Math Status Flags

No

Fault Conditions

None specific to this instruction. See Common Attributes for operand-related faults.

Execution

Ladder Diagram

Condition	Ladder Diagram Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes. EnableIn toggles from cleared to set.
Postscan	N/A

Structured Text

Condition	Structured Text Action
Prescan	N/A
Normal execution	The instruction executes. EnableIn toggles from cleared to set.
Postscan	N/A

Examples

Ladder Diagram

GEQ	ARD	
Grtr Than or Eql (A>=B)	ASCII Read (EN)	
Source A bar_code_count.POS	Channel 0	
0 🖛	 Destination bag_bar_code (DN) 	<u> </u>
Source B 24	* ←	
	SerialPort Control bar_code_read -(ER)	—
	SerialPort Control Length 24 4	
	Characters Read 0 🖛	

Structured Text

ACB(o,bar_code_count);

IF bar_code_count.POS >= 24 THEN

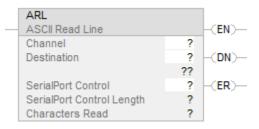
bar_code_read.LEN := 24;

ARD(0,bag_bar_code,bar_code_read);

END_IF;

ASCII Read Line (ARL)

This instruction is compatible with Studio 5000 Logix Emulate controllers only. This instruction is not compatible with emulated 5580 controllers.


The ASCII Read Line (ARL) instruction removes characters from the buffer and stores them in the Destination.

Tip: ASCII Serial Port instructions (AWT, AWA, ARD, ARL, ABL, ACB, AHL, ACL) are not available for controllers that do not have serial ports.

Available Languages

Ladder Diagram

Function Block

This instruction is not available in function block.

Structured Text

ARL(Channel, Destination, SerialPortControl);

Operands

Ladder Diagram

Operand	Туре	Format	Description	Notes
Channel	DINT	immediate	0	
		tag		
Destination	String type	tag	tag into which the	If you want to compare,
	SINT		characters are moved	convert, or manipulate
	211/1		(i.e., read)	

		1	Т	I
	INT		For a string type, enter	the characters, enter a
	DINT		the name of the tag.	string type tag.
	DINT		For a SINT, INT, or DINT	String types are:
			array, enter the first	default STRING data
			element of the array.	type
				any new string type you
				create
SerialPort Control	SERIAL_PORT_CONTROL	tag	tag that controls the	
			operation	
Serial Port Control	DINT	immediate	maximum number of	Enter the maximum
Length			characters to read if no	number of characters
			termination characters	that any message will
			are found.	contain (i.e., when
				to stop reading if no
				termination characters
				are found).
				For example, if
				messages range from
				3 to 6 characters in
				length, enter 6.
				The Serial Port Control
				Length must be less
				than or equal to the siz
				of the Destination.
				If you want to set the
				Serial Port Control
				Length equal to the size
				of the Destination, ente
				0.
Characters Read	DINT	immediate	0	During execution,
				displays the number of
				characters that were
				read

Structured Text

Operand	Туре	Format	Description	Notes
Channel	DINT	immediate	0	
		tag		
Destination	String type	tag	tag into which the	If you want to compare,
	CINT		characters are moved	convert, or manipulate
	SINT		(i.e., read)	the characters, enter a
	INT		For a string type, enter	string type tag.
	DINT		the name of the tag.	String types are:

			For a SINT, INT, or DINT	default STRING data
			array, enter the first	type
			element of the array.	any new string type you
				create
SerialPort Control	SERIAL_PORT_CONTROL	tag	tag that controls the	
			operation	
Serial Port Control	DINT	immediate	maximum number of	Enter the maximum
Length			characters to read if no	number of characters
			termination characters	that any message will
			are found.	contain (i.e., when
				to stop reading if no
				termination characters
				are found).
				For example, if
				messages range from
				3 to 6 characters in
				length, enter 6.
				The Serial Port Control
				Length must be less
				than or equal to the size
				of the Destination.
				If you want to set the
				Serial Port Control
				Length equal to the size
				of the Destination, enter
				0.
Characters Read	DINT	immediate	0	During execution,
				displays the number of
				characters that were
				read

However, you specify the Serial Port Control Length and the Characters Read values by accessing the .LEN and .POS members of the SERIAL_PORT_CONTROL structure, rather than by including the values in the operand list.

See Structured Text Syntax for more information on the syntax of expressions within structured text.

SERIAL_PORT_CONTROL Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the instruction is enabled.
.EU	BOOL	The queue bit indicates the instruction entered the ASCII queue.

.DN	BOOL	The done bit indicates the instruction is done, but it is asynchronous to the logic scan.
.RN	BOOL	The run bit indicates the instruction is executing.
.EM	BOOL	The empty bit indicates the instruction is done, but it is synchronous to the logic scan.
.ER	BOOL	The error bit indicates when the instruction fails (errors).
.FD	BOOL	The found bit does not apply to this instruction.
.LEN	DINT	The length indicates the maximum number of characters to move to the destination (i.e., when to stop reading if no termination characters are found).
.POS	DINT	The position displays the number of characters that were read.
.ERROR	DINT	The error contains a hexadecimal value that identifies the cause of an error.

Description

•

The ARL instruction removes characters from the buffer and stores them in the Destination, as follows:

- The ARL instruction continues to execute until it removes either the:
 - First set of termination characters
 - Secified number of characters (String Length operand)

While the ARL instruction is executing, no other ASCII instruction executes. To program the ARL instruction, follow these guidelines:

- 1. Configure the serial port of the controller for User mode and define the characters that serve as the termination characters.
- Use the results of an ABL instruction to trigger the ARL instruction.
 This prevents the ARL instruction from holding up the queue while it waits for the termination characters.
 Refer to the ARL example below for more information.
- 3. This is a transitional instruction:

In ladder diagram, toggle the EnableIn from cleared to set each time the instruction should execute.In structured text, condition the instruction so that it only executes on a transition

4. To trigger a subsequent action when the instruction is done, examine the .EM bit.

Affects Math Status Flags

No

Fault Conditions

None specific to this instruction. See Common Attributes for operand-related faults.

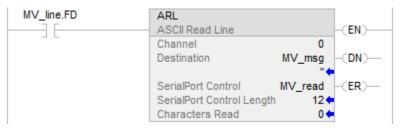
Execution

Ladder Diagram

Condition	Ladder Diagram Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes. EnableIn toggles from cleared to set.
Postscan	N/A

Structured Text

Condition	Structured Text Action
Prescan	N/A
Normal execution	The instruction executes. EnableIn toggles from cleared to set.
Postscan	N/A


Example

Continuously tests the buffer for a message from the MessageView terminal. Since each message ends in a carriage return (\$r), the carriage return is configured as the termination character on the User Protocol tab of the Controller Properties dialog.

When the ABL finds a carriage return, it sets the .FD bit. When the ABL instruction finds the carriage return (MV_line.FD is set), the controller has received a complete message.

The ARL instruction removes the characters from the buffer, up to and including the carriage return, and places them in the DATA member of the MV_msg tag, which is a string type.

Ladder Diagram

Structured Text

ABL(0,MV_line);

osri_1.InputBit :=MVLine.FD

OSRI(osri_1);

IF osri_1.OutputBit) THEN

mv_read.LEN := 12;

ARL(0,MV_msg,MV_read);

END_IF;

ASCII Test for Buffer Line (ABL)

This instruction is compatible with Studio 5000 Logix Emulate controllers only. This instruction is not compatible with emulated 5580 controllers.

The ASCII Test for Buffer Line (ABL) instruction counts the characters in the buffer up to and including the first termination character.

Tip: ASCII Serial Port instructions (AWT, AWA, ARD, ARL, ABL, ACB, AHL, ACL) are not available for controllers that do not have serial ports.

Available Languages

Ladder Diagram

	ABL		
_	ASCII Test For Buffer	Line	-(EN)
	Channel	?	-(DN)
	SerialPort Control	?	-(ER)
	Character Count	?	

Function Block

This instruction is not available in function block.

Structured Text

ABL(Channel,SerialPortControl);

Operands

Ladder Diagram

Operand	Туре	Format	Description
Channel	DINT	immediate	0
SerialPort Control	SERIAL_PORT_CONTROL	tag	tag that controls the operation
Character Count	DINT	immediate	0
			During execution, displays the
			number of characters in the
			buffer, including the first set
			of termination characters.

Structured Text

Operand	Туре	Format	Description
Channel	DINT	immediate	0
SerialPort Control	SERIAL_PORT_CONTROL	tag	tag that controls the operation
Character Count	DINT	immediate	0
			During execution, displays the
			number of characters in the
			buffer, including the first set
			of termination characters.

You access the Character Count value via the .POS member of the SERIAL_PORT_CONTROL structure.

See Structured Text Syntax for more information on the syntax of expressions within structured text.

SERIAL_PORT_CONTROL Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the instruction is enabled.
.EU	BOOL	The queue bit indicates the instruction entered the ASCII queue.
.DN	BOOL	The done bit indicates when the instruction is done, but it is asynchronous to the logic scan.
.RN	BOOL	The run bit indicates the instruction is executing.
.EM	BOOL	The empty bit indicates the instruction is done, but it is synchronous to the logic scan.
.ER	BOOL	The error bit indicates when the instruction fails (errors).
.FD	BOOL	The found bit indicates the instruction found the termination character(s).
.POS	DINT	The position determines the number of characters in the buffer, up to and including the first set of termination characters. The instruction only returns this number after it finds the termination character(s).
.ERROR	DINT	The error contains a hexadecimal value that identifies the cause of an error.

Description

The ABL instruction searches the buffer for the first set of termination characters. If the instruction finds the termination characters, it:

- sets the .FD bit
- counts the characters in the buffer up to and including the first set of termination characters

The **User Protocol** tab of the **Controller Properties** dialog box defines the ASCII characters that the instruction considers as the termination characters.

To program the ABL instruction, follow these guidelines:

 Configure the serial port of the controller for User mode and define the characters that serve as the termination characters.

This is a transitional instruction:

- In ladder diagram, toggle the EnableIn from cleared to set each time the instruction should execute.
- In structured text, condition the instruction so that it only executes on a transition

Affects Math Status Flags

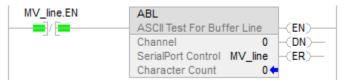
No

Fault Conditions

None specific to this instruction. See Common Attributes for operand-related faults.

Execution

Ladder Diagram


Condition	Ladder Diagram Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes. EnableIn toggles from cleared to set.
Postscan	N/A

Structured Text

Condition	Structured Text Action
Prescan	N/A
Normal execution	The instruction executes. EnableIn toggles from cleared to set.
Postscan	N/A

Example

Ladder Diagram

Structured Text

ABL(0,MV_line);

ASCII Write (AWT)

This instruction is compatible with Studio 5000 Logix Emulate controllers only. This instruction is not compatible with emulated 5580 controllers.

The ASCII Write (AWT) instruction sends characters of the Source array to a serial device.

Tip: ASCII Serial Port instructions (AWT, AWA, ARD, ARL, ABL, ACB, AHL, ACL) are not available for controllers that do not have serial ports.

Available Languages

Ladder Diagram

	AWT		
-1	ASCII Write		-(EN)
	Channel	?	
	Source	?	-(DN)-
		??	
	SerialPort Control	?	-(ER)
	SerialPort Control Length	?	
	Characters Sent	?	

Function Block

This instruction is not available in function block.

Structured Text

AWT(Channel,Source,SerialPortControl);

Operands

Ladder Diagram

Operand	Туре	Format	Description	Notes
Channel	DINT	immediate	0	
_		tag		
Source	String type	tag	Tag that contains the	If you want to compare,
			characters to send	convert, or manipulate

	SINT		For a string type, enter	the characters, enter a
	INT		the name of the tag.	string type tag.
			For a SINT, INT, or DINT	String types are:
	DINT		array, enter the first	default STRING data
			element of the array.	type
				any new string type you
				create
Serial Port Control	SERIAL_PORT_CONTROL	tag	Tag that controls the	
			operation	
Serial Port Control	DINT	immediate	Number of characters	The Serial Port Control
Length			to send	Length must be less
				than or equal to the size
				of the Source.
				If you want to set the
				Serial Port Control
				Length equal to the
				number of characters in
				the Source, enter O.
Characters Sent	DINT	immediate	0	During execution,
				displays the number of
				characters that were
				sent
	•	•	•	•

Structured Text

Operand	Туре	Format	Description	Notes
Channel	DINT	immediate	0	
		tag		
Source	String type	tag	Tag that contains the	If you want to compare,
	SINT		characters to send	convert, or manipulate
	2111		For a string type, enter	the characters, enter a
	INT		the name of the tag.	string type tag.
	DINT		For a SINT, INT, or DINT	String types are:
	DINT		array, enter the first	default STRING data
			element of the array.	type
				any new string type you
				create
Serial Port Control	SERIAL_PORT_CONTROL	tag	Tag that controls the	
			operation	
Serial Port Control	DINT	immediate	Number of characters	The Serial Port Control
Length			to send	Length must be less
				than or equal to the size
				of the Source.

				If you want to set the Serial Port Control Length equal to the number of characters in the Source, enter O.
Characters Sent	DINT	immediate	0	During execution, displays the number of characters that were sent

You can specify the Serial Port Control Length and the Characters Sent values by accessing the .LEN and .POS members of the SERIAL_PORT_CONTROL structure, rather than by including the values in the operand list.

See Structured Text Syntax for more information on the syntax of expressions within structured text.

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the instruction is enabled.
.EU	BOOL	The queue bit indicates the instruction entered the ASCII queue.
.DN	BOOL	The done bit indicates the instruction is done, but it is asynchronous to the logic scan.
.RN	BOOL	The run bit indicates the instruction is executing.
.EM	BOOL	The empty bit indicates the instruction is done, but it is synchronous to the logic scan.
.ER	BOOL	The error bit indicates when the instruction fails (errors).
.FD	BOOL	The found bit does not apply to this instruction.
.LEN	DINT	The length indicates the number of characters to send.
.POS	DINT	The position displays the number of characters that were sent.
.ERROR	DINT	The error contains a hexadecimal value that identifies the cause of an error.

SERIAL_PORT_CONTROL Structure

Description

The AWT instruction sends the specified number of characters (i.e., serial port control length) of the Source tag to the device that is connected to the serial port of the controller.

To program the AWT instruction, follow these guidelines:

1. Configure the serial port of the controller:

If your application:	Then:
Uses ARD or ARL instruction	Select User mode
Does not use ARD or ARL instructions	Select System or User mode

- This is a transitional instruction: In ladder diagram, toggle the EnableIn from cleared to set each time the instruction should execute. In structured text, condition the instruction so that it only executes on a transition
- 3. Each time the instruction executes, do you always send the same number of characters?

lf:	Then:
Yes	In the Serial Port Control Length, enter the number of
	characters to send.
No	Before the instruction executes, move the LEN member of
	the Source tag to the LEN member of the Serial Port Control
	tag. Refer to example 2 below.

Affects Math Status Flags

No

Fault Conditions

None specific to this instruction. See Common Attributes for operand-related faults.

Execution

Ladder Diagram

Condition	Ladder Diagram Action	
Prescan	N/A	
Rung-condition-in is false	N/A	
Rung-condition-in is true	The instruction executes. EnableIn toggles from cleared to set.	
Postscan	N/A	

Structured Text

Condition	Structured Text Action
Prescan	N/A
Normal execution	The instruction executes. EnableIn toggles from cleared to set.
Postscan	N/A

Examples

Example 1

When the temperature reaches the low limit (i.e., temp_low is on), the AWT instruction sends a message to the MessageView terminal that is connected to the serial port of the controller. The message nine characters from the DATA member of the string[2] tag, which is a string type. (The \$14 counts as one character; it is a hex code for the Ctrl-T character.) The last character is a carriage return (\$r), which marks the end of the message.

Ladder Diagram

temp_low	AWT	
] [ASCII Write -(EN)-	
	Channel 0	
	Source string[2] -(DN)-	-
	'\$142224\01\$r' 🖛	
	SerialPort Control temp_low_write -(ER)-	-
	SerialPort Control Length 94	
	Characters Sent 9 🖛	

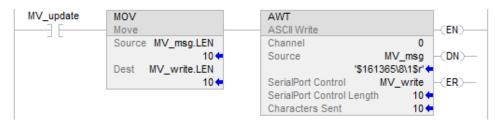
Structured Text

osri_1.InputBit := temp_low;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

temp_low_write.LEN := 9;


AWT(0.string[2],temp_low_write);

END_IF;

Example 2

When MV_update is on, the AWT instruction sends the characters in MV_msg. Because the number of characters in MV_msg varies, the rung first moves the length of the string (MV_msg.LEN) to the Serial Port Control Length of the AWT instruction (MV_write.LEN). (In MV_msg, the \$16 counts as one character; it is the hex code for the Ctrl-V character.)

Ladder Diagram

Structured Text

osri_1.InputBit := MV_update;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

MV_write.LEN := Mv_msg.LEN;

AWT(0.MV_msg,MV_write);

END_IF;

ASCII Write Append (AWA)

This instruction is compatible with Studio 5000 Logix Emulate controllers only. This instruction is not compatible with emulated 5580 controllers.

The ASCII Write Append (AWA) instruction sends characters of the Source array to a serial device and appends either one or two predefined characters.

Tip: ASCII Serial Port instructions (AWT, AWA, ARD, ARL, ABL, ACB, AHL, ACL) are not available for controllers that do not have serial ports.

Available Languages

Ladder Diagram

AWA		
ASCII Write Append		-(EN)-
Channel	?	
Source	?	-(DN)-
	??	
SerialPort Control	?	-(ER)-
SerialPort Control Length	?	
Characters Sent	?	

Function Block

This instruction is not available in function block.

Structured Text

AWA(Channel,Source,SerialPortControl);

Operands

Ladder Diagram

Operand	Туре	Format	Description	Notes
Channel	DINT	immediate	0	
		tag		
Source	String type	tag	tag that contains the	If you want to compare,
	SINT		characters to send	convert, or manipulate
			For a string type, enter	the characters, enter a
	INT		the name of the tag	string type tag.
				String types are:

	DINT		For a SINT INT or DINT	default STRING data
	DINI		For a SINT, INT, or DINT	
			array, enter the first	type
			element of the array.	any new string type you
				create
Serial Port Control	SERIAL_PORT_CONTROL	tag	tag that controls the	
			operation	
Serial Port Control	DINT	immediate	number of characters	The Serial Port Control
Length			to send	Length must be less
				than or equal to the size
				of the Source.
				If you want to set the
				Serial Port Control
				Length equal to the
				number of characters in
				the Source, enter O.
Characters Sent	DINT	immediate	0	During execution,
				displays the number of
				characters that were
				sent.

Structured Text

Operand	Туре	Format	Description	Notes
Channel	DINT	immediate	0	
		tag		
Source	String type	tag	tag that contains the	If you want to compare,
	SINT		characters to send	convert, or manipulate
	3111		For a string type, enter	the characters, enter a
	INT		the name of the tag	string type tag.
	DINT		For a SINT, INT, or DINT	String types are:
	DINT		array, enter the first	default STRING data
			element of the array.	type
				any new string type you
				create
Serial Port Control	SERIAL_PORT_CONTROL	tag	tag that controls the	
			operation	
Serial Port Control	DINT	immediate	number of characters	The Serial Port Control
Length			to send	Length must be less
				than or equal to the size
				of the Source.
				If you want to set the
				Serial Port Control
				Length equal to the

				number of characters in the Source, enter O.
Characters Sent	DINT	immediate	0	During execution, displays the number of characters that were sent.

You can specify the Serial Port Control Length and the Characters Sent values by accessing the .LEN and .POS members of the SERIAL_PORT_CONTROL structure, rather than by including the values in the operand list.

See Structured Text Syntax for more information on the syntax of expressions within structured text.

SERIAL_PORT_CONTROL Structure

Mnemonic	Data Type	Description
.EN	BOOL	The enable bit indicates the instruction is enabled.
.EU	BOOL	The queue bit indicates the instruction entered the ASCII queue.
.DN	BOOL	The done bit indicates the instruction is done, but it is asynchronous to the logic scan.
.RN	BOOL	The run bit indicates the instruction is executing.
.EM	BOOL	The empty bit indicates the instruction is done, but it is synchronous to the logic scan.
.ER	BOOL	The error bit indicates when the instruction fails (errors).
.FD	BOOL	The found bit does not apply to this instruction.
.LEN	DINT	The length indicates the number of characters to send.
.POS	DINT	The position displays the number of characters that were sent.
.ERROR	DINT	The error contains a hexadecimal value that identifies the cause of an error.

Description

The AWA instruction:

- Sends the specified number of characters (i.e., serial port control length) of the Source tag to the device that ٠ is connected to the serial port of the controller
- Adds to the end of the characters (i.e., appends) either one or two characters that are defined on the User ٠ Protocol tab of the Controller Properties dialog.

To program the AWA instruction, follow these guidelines:

1. Configure the serial port of the controller:

If your application:	Then:
Uses ARD or ARL instruction	Select User mode
Does not use ARD or ARL instructions	Select either System or User mode

2. This is a transitional instruction: In ladder diagram, toggle the EnableIn from cleared to set each time the instruction should execute.

In structured text, condition the instruction so that it only executes on a transition

3. Each time the instruction executes, do you always send the same number of characters?

lf:	Then:
Yes	In the Serial Port Control Length, enter the number of
	characters to send.
No	Before the instruction executes, move the LEN member of
	the Source tag to the LEN member of the Serial Port Control
	tag. (Refer to example 2 below.)

Affects Math Status Flags

No

Fault Conditions

None specific to this instruction. See Common Attributes for operand-related faults.

Execution

Ladder Diagram

Condition	Ladder Diagram Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes. EnableIn toggles from cleared to set.
Postscan	N/A

Structured Text

Condition	Structured Text Action
Prescan	N/A
Normal execution	The instruction executes. EnableIn toggles from cleared to set.
Postscan	N/A

Examples

Example 1

When the temperature exceeds the high limit (temp_high is on), the AWA instruction sends a message to the MessageView terminal that is connected to the serial port of the controller.

The message contains five characters from the DATA member of the string[1] tag, which is a string type. (The \$14 counts as one character; it is a hex code for the Ctrl-T character.)

The instruction also sends (appends) the characters defined in the controller properties. In this example, the AWA instruction sends a carriage return (\$0D), which marks the end of the message.

Ladder Diagram

temp_high	AWA ASCII Write Append	N)
	Channel 0	-
	Source string[1] -(D	N)
	\$1425\1'	
	SerialPort Control temp_high_write -(El	R)— - (
	SerialPort Control Length 54	
	Characters Sent 6+	

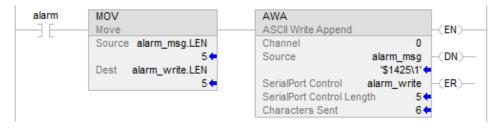
Structured Text

IF temp_high THEN

temp_high_write.LEN := 5;

AWA(o,string[1],temp_high_write);

temp_high := 0;


END_IF;

Example 2

When alarms is on, the AWA instruction sends the specified number of characters in alarm_msg and appends a termination character(s). Because the number of characters in alarm_msg varies, the rung first moves the length of the string (alarm_msg.LEN)

to the Serial Port Control Length of the AWA instruction (alarm_write.LEN). In alarm_msg, the \$14 counts as one character; it is the hex code for the Ctrl-T character.

Ladder Diagram

Structured Text

osri_1.InputBit := alarm;

OSRI(osri_1);

IF(osri_1.OutputBit) THEN

alarm_write.LEN := alarm_msg.LEN;

AWA(0,alarm_msg,alarm_write);

END_IF;

String Types

Store ASCII characters in tags that use a string type data type to:

- Use the default STRING data type, which stores up to 82 characters
- Create a new string type that stores less or more characters

To create a new string type, refer to the Logix 5000 Controllers ASCII Strings Programming Manual publication 1756-PM013.

Each string type contains the following members:

Name	Data Type	Description	Notes
LEN	DINT	number of characters in the	The LEN automatically updates
		string	to the new count of characters
			whenever using:
			• The String Browser to
			enter characters
			Instructions that read,
			convert, or manipulate a
			string
			The LEN shows the length
			of the current string.
			The DATA member may
			contain additional, old
			characters, which are
			not included in the LEN
			count.
DATA	SINT array	ASCII characters of the string	To access the characters of
			the string, address the name
			of the tag. For example, to
			access the characters of the
			string_1 tag, enter string_1.
			Each element of the DATA
			array contains one character.
			Create new string types that
			store less or more characters.

ASCII Error Codes

If an ASCII serial port instruction fails to execute, the ERROR member of its SERIAL_PORT_CONTROL structure will contain one of the following hexadecimal error codes:

	Ι
Hex	Indicates:
code	
16#2	The modem went offline.
16#3	The CTS signal was lost during communication.
16#4	The serial port was in System mode.
16#5	Instructions could not be sent or received because the channel configuration has been shutdown via the channel configuration menu.
16#6	Bad Parameters were passed to the ASCII driver.
16#7	Instructions could not be sent or received because the channel configuration has been shut down via the channel configuration menu.
16#8	Transmission already in progress. This will cause the instruction in progress to error.
16#9	The ASCII Communication requested is not supported by the current channel configuration.
16#10	Attempted to execute an AHL instruction while the Channel was in System Mode.
16#A	Before the instruction executed, the UL bit was set. This stops the execution of the instruction.
16#B	The Port this instruction was requested to operate on does not exist.
16#C	The controller changed from Run mode to Program mode. This stops the execution of an ASCII serial port instruction and clears the queue.
16#D	On the User Protocol tab of the Controller Properties dialog, the buffer size or echo mode parameters were changed and applied. This stops the execution of an ASCII serial port instruction and clears the queue.
16#E	The ACL instruction executed and stopped or removed this type of instruction.
16#F	The serial port configuration changed from User mode to System mode. This stops the execution of an ASCII serial port instruction and clears the queue.

Chapter 17 ASCII Serial Port Instructions

16#51	The LEN value of the string tag is either negative or greater than the DATA size of the string tag.
16#54	The Serial Port Control length is greater than the size of the buffer.
16#55	The Serial Port Control length is either negative or greater than the size of the Source or Destination.

ASCII String Instructions

Use the ASCII string instructions to modify and create strings of ASCII characters.

Available Instructions

Ladder Diagram and Structured Text

FIND on page 808 INSERT of	n page 810 MID on page 812	CONCAT on page 815	DELETE on page 819
----------------------------	----------------------------	--------------------	--------------------

Function Block

Not available

lf you want to:	Use this instruction:
Add termination characters or delimiters to a string	CONCAT
Delete characters from a string (e.g., remove header or control	DELETE
characters from a string)	
Determine the starting character of a sub-string	FIND
Insert characters into a string	INSERT
Extract characters from a string	MID

You can also use the following instructions to compare or convert ASCII characters:

lf you want to:	Use this instruction:
Compare a string to another string	СМР
See if the characters are equal to specific characters	EO
See if the characters are not equal to specific characters	NE
See if the characters are equal to or greater than specific characters	GE
See if the characters are greater than specific characters	GT
See if the characters are equal to or less than specific characters	LE
See if the characters are less than specific characters	ц
Rearrange the bytes of an INT, DINT, or REAL tag	SWPB
Find a string in an array of strings	FSC
Convert characters to a SINT, INT, DINT, or REAL value	STOD
Convert characters to a REAL value	STOR
Convert a SINT, INT, DINT, or REAL value to a string of ASCII characters	DTOS
Convert a REAL value to a string of ASCII characters	RTOS

Find String (FIND)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The FIND instruction locates the starting position of a specified string within another string.

Available Languages

Ladder Diagram

FIND	
Find String	
Source	?
	??
Search	?
	??
Start	?
	??
Result	?
	??

Function Block

This instruction is not available in function block.

Structured Text

FIND (Source,Search,Start,Result);

Operands

There are data conversion rules for mixed data types within an instruction. See Data conversions on page 851.

Ladder Diagram and Structured Text

Operand	Туре	Format	Description	Notes
Source	ANY_STRING	Tag	The string to search in	String types are:
Search	ANY_STRING	Tag	The string to find	default STRING data type with max 82 length of characters for the string. any new string type you created with configurable length of characters for the string.
Start	SINT INT DINT	Immediate tag	The position in Source to start the search	Enter a number between 1 and the DATA size of the Source.

Operand	Туре	Format	Description	Notes
Result	DINT	Tag	The position in Source	
	SINT		where search string	
	51141		was found	
	INT			

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.DescriptionThe FIND instruction searches the Source string for the Search string. If the instruction finds the Search string, the Result shows the starting position of the Search string within the Source string. Otherwise the Results is zero.Affects Math Status FlagsNoMajor/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
The LEN value of the string tag is greater	4	51
than the DATA size of the string tag.		
The Start value is invalid, or	4	56
the Source string is empty.		

None specific to this instruction. See Common Attributes for General Instructions on page 849 for operand related faults.

Execution

Ladder Diagram

Condition	Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action
Prescan	See Prescan in the Ladder Diagram table
Normal execution	See Rung-condition-in is true in the Ladder Diagram table.
Postscan	See Postscan in the Ladder Diagram table

Example

A message from a MessageView terminal contains several pieces of information. The backslash character (\) separates each piece of information. To locate a piece of information, the FIND instruction searches for the backslash character and records its position in find_pos.

Ladder Diagram

MV_read.EM	FIND Find String
	Source MV_msg "\$06324\12\1\\$r' ←
	Search find
	Start 1
	Result find_pos 5 (

Structured Text

IF MV_read.EM THEN

FIND(MV_msg,find,1,find_pos);

MV_read.EM := 0;

END_IF;

Insert String (INSERT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

Use the INSERT instruction to add ASCII characters to a specified location within a string.

Available Languages

Ladder Diagram

INSERT	
Insert String	-
Source A	?
	??
Source B	?
	??
Start	?
	??
Dest	?
	??

Function Block

Structured Text

INSERT (SourceA, SourceB, Start, Dest);

Operands

There are data conversion rules for mixed data types within an instruction. See Data conversions on page 851. The INSERT instruction uses the following operands.

Operand	Туре	Format	Description	Notes
Source A	String type	Tag	String to add the characters to	String types are default STRING data types or
Source B	String type	Tag	String containing the characters to add	any new string types you create
Start	SINT DINT	Immediate tag	Position in Source A to add the characters	Enter a number betweer 1 and the DATA size of the Source.
Destination	String type	Tag	String to store the result	

Ladder Diagram and Structured Text

See Structured Text Syntax for more information on the syntax of expressions within structured text.

Description

The INSERT instruction adds the characters in Source B to a designated position within Source A and places the result in the Destination.

- Start defines where in Source A that Source B is added.
- Unless Source A and the Destination are the same tag, Source A remains unchanged.

Affects Math Status Flags

No

Major/Minor Faults

Туре	Code	Cause	Recovery Method
4	51	The LEN value of the string tag is greater than the DATA size of the string tag.	 Check that no instruction is writing to the LEN member of the string type tag. In the LEN value, enter the number of characters that the string contains.
4	56	The Start or Quantity value is invalid.	Check that the Start value is between 1 and the DATA size of the Source.

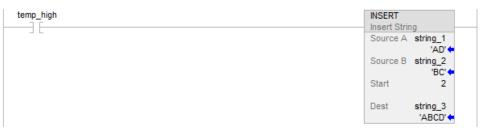
Execution

Ladder Diagram

Condition	Ladder Diagram Action	
Prescan	The rung-condition-out is set to false.	
Rung-condition-in is false	The rung-condition-out is set to false.	

Condition	Ladder Diagram Action	
Rung-condition-in is true	The instruction executes.	
	The rung-condition-out is set to true.	
Postscan	The rung-condition-out is set to false.	

Execution


Structured Text

Condition	Action	
Prescan	See Prescan in the Ladder Diagram table	
Normal execution	See rung-condition-in is true in the Ladder Diagram table.	
Postscan	See Postscan in the Ladder Diagram table	

Example

When *temp_high* is set, the INSERT instruction adds the characters in *string_2* to position 2 within *string_1* and places the result in *string_3*.

Ladder Diagram

Structured Text

IF temp_high THEN

INSERT(string_1, string_2, 2, string_3);

temp_high := 0;

END_IF;

Middle String (MID)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The MID instruction copies a specified number of ASCII characters from a string and stores them in another string.

Available Languages

Ladder Diagram

	MID		
-	Middle String		-
	Source	?	
		??	
	Qty	?	
		??	
	Start	?	
		??	
	Dest	?	
		??	

Function Block

This instruction is not available in function block.

Structured Text

MID(Source,Qty,Start,Dest);

Operands

There are data conversion rules for mixed data types within an instruction. See Data conversions on page 851.

Ladder Diagram and Structured Text

Operand	Туре	Format	Description	Notes
Source	ANY_STRING	Tag	The string to copy	String types are:
			characters from	default STRING data
				type with max 82 length
				of characters for the
				string.
				any new string type
				you created with
				configurable length
				of characters for the
				string.
Quantity	SINT	Immediate	The number of	The Start plus the
	INT	tog	characters to copy	Quantity must be less
		tag		than or equal to the
	DINT			length size of the
				Source plus 1.
Start	SINT	Immediate	The position of the first	Enter a number between
			character to copy	1 and the DATA size of
	INT	tag		the Source.
	DINT			
Destination	ANY_STRING	Tag	The string to copy the	
			characters to	

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Description

The MID instruction copies a group of characters from the Source and places the result in the Destination.

- The Start position and Quantity define the characters to copy.
- Unless the Source and the Destination are the same tag, the Source remains unchanged.

Affects Math Status Flags

No

Major/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
The LEN value of the Source string tag is greater than the DATA size of the Source string tag.	4	51
The length of output string is larger than the DATA size of the destination string tag.	4	52
The Start or Quantity value is invalid.	4	56

Execution

Ladder Diagram

Condition	Ladder Diagram Action	
Prescan	N/A	
Rung-condition-in is false	N/A	
Rung-condition-in is true	The instruction executes.	
Postscan	N/A	

Structured Text

Condition	Action	
Prescan	See Prescan in the Ladder Diagram table	
Normal execution	See rung-condition-in is true in the Ladder Diagram table.	
Postscan	See Postscan in the Ladder Diagram table	

Example

In the baggage handling conveyor of an airport, each bag gets a bar code. Characters 9 through 17 of the bar code are the flight number and destination airport of the bag. After the bar code is read (bag_read.EM is on), the MID instruction copies the flight number and destination airport to the bag_flt_and_dest string. Subsequent rungs use bag_flt_and_dest to determine where to route the bag.

Ladder Diagram

bag_read.EM		g_barcode 5058 AN← 9
	Start	9
	Dest bag_fl	and_dest

Structured Text

IF bag_read.EM THEN

MID(bag_barcode,9,9,bag_flt_and_dest);

bag_read.EM := 0;

END_IF;

String Concatenate (CONCAT)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The CONCAT instruction adds ASCII characters to the end of a string.

Available Languages

Ladder Diagram

CONCAT String Concat	enste
Source A	?
	??
Source B	?
	??
Dest	?
	??

Function Block

This instruction is not available in function block.

Structured Text

CONCAT(SourceA,SourceB,Dest);

Operands

There are data conversion rules for mixed data types within an instruction. See Data conversions on page 851 for more information on Data Conversion.

	Format	Description	Notes
ANY_STRING	tag	Tag that contains the initial characters	String types are: • Default STRING
ANY_STRING	tag	Tag that contains the end characters	 data type with maximum 82 length of characters for the string. Any new string type you created with configurable length of characters for the
ANY_STRING	tag	Tag to store the result	
	ANY_STRING	ANY_STRING tag	ANY_STRING tag Tag that contains the end characters

Ladder Diagram and Structured Text

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Description

The CONCAT instruction combines the characters in Source A with the characters in Source B and places the result in the Destination.

The characters from Source A are first, followed by the characters from Source B.

Unless Source A and the Destination are the same tag, Source A remains unchanged.

Affects Math Status Flags

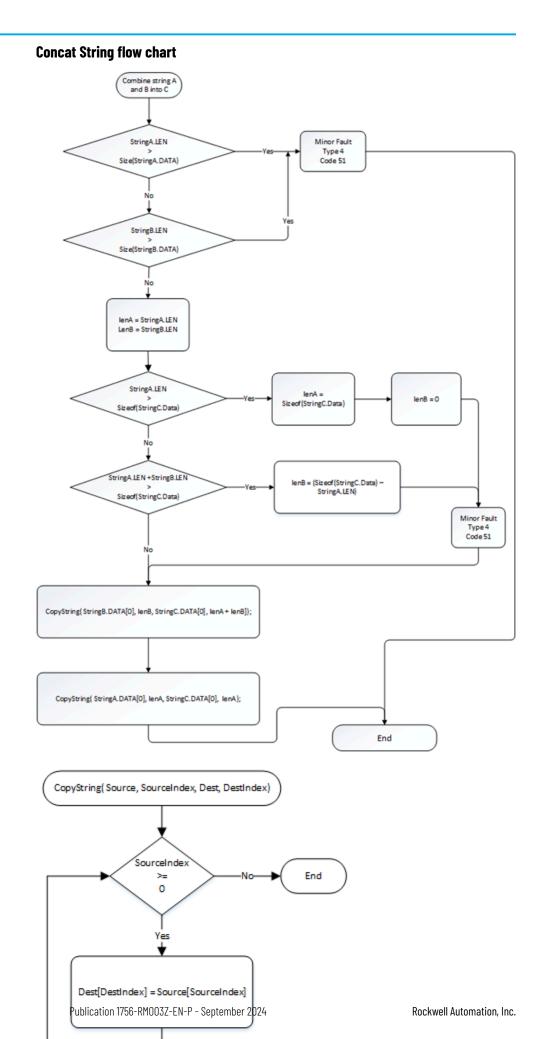
No

Major/Minor Faults

A minor fault will occur if:	Fault Type	Fault Code
The LEN value of the string tag is greater	4	51
than the DATA size of the string tag.		
The sum length of Source A and Source B	4	51
is greater than the DATA size of the string		
tag.		

See Index through arrays on page 863 for array-indexing faults.

Execution


Ladder Diagram

Condition	Action Taken
Prescan	N/A

Condition	Action Taken
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action Taken
Prescan	See Prescan in the Ladder Diagram table.
Normal execution	See rung-condition-in is true in the Ladder Diagram table.
Postscan	See Postscan in the Ladder Diagram table.

Example

Ladder Diagram

_node	CONCAT String Concatenate
	Source A string_1 '\$1423\'
	Source B node_num_ascii '1' (
	Dest msg '\$1423\1'

Structured Text

CONCAT(string_1,string_2,msg);

String Delete (DELETE)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The DELETE instruction removes ASCII characters from a string.

Available Languages

Ladder Diagram

DELETE	
String Delete	-
Source	?
	??
Qty	?
	??
Start	?
	??
Dest	?
	??

Function Block

This instruction is not available in function block.

Structured Text

DELETE(Source,Qty,Start,Dest);

Operands

There are data conversion rules for mixed data types within an instruction. See Data conversions on page 851.

Ladder Diagram and Structured Text

Chapter 18 ASCII String Instructions

Operand	Туре	Format	Description	Notes
Source	ANY_STRING	tag	The tag that contains	String types are:
			the string from which	default STRING data
			you want to delete	type with max 82 length
			characters	of characters for the
				string.
				any new string type
				you created with
				configurable length
				of characters for the
				string.
Quantity	SINT	immediate	The number of	The Start plus the
			characters to delete	Quantity must be less
	INT	tag		than or equal to the
	DINT			length of the Source
				plus 1.
Start	SINT	immediate	The position of the first	Enter a number betwee
			character to delete	1 and the DATA size of
	INT	tag		the Source.
	DINT			
Destination	String type	tag	The tag to store the	
			result	

See Structured Text Syntax on page 879 for more information on the syntax of expressions within structured text.

Description

The DELETE instruction deletes (removes) one or more characters from the Source and places the remaining characters in the Destination.

- The Start position and Quantity define the characters to remove.
- Unless Source A and the Destination are the same tag, Source A remains unchanged.

Affects Math Status Flags

No

Major/Minor Faults

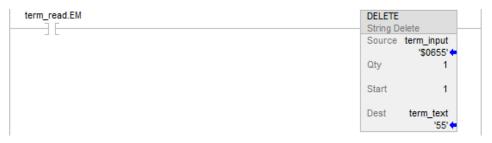
A minor fault will occur if:	Fault Type	Fault Code
The LEN value of the Source string tag is greater than the DATA size of the Source string tag.	4	51
The length of output string is larger than the DATA size of the destination string tag.	4	52
The Start or Quantity value is invalid.	4	56

See Common Attributes for General Instructions on page 849 for operand-related faults.

Execution

Ladder Diagram

Condition/State	Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A


Structured Text

Condition/State	Action
Prescan	See Prescan in the Ladder Diagram table.
Normal execution	See rung-condition-in is true in the Ladder Diagram table.
Postscan	See Postscan in the Ladder Diagram table.

Examples

ASCII information from a terminal contains a header character. After the controller reads the data (term_read.EM is on), the DELETE instruction removes the header character. The controller can then use the text of the message or pass it on to another device.

Ladder Diagram

Structured Text

IF term_read.EM THEN

DELETE(term_input,1,1,term_text);

term_read.EM := 0;

END_IF;

ASCII Conversion Instructions

Use the ASCII conversion instructions to convert data to or from strings of ASCII characters.

Available Instructions

Ladder Diagram and Structured Text

STOD on page 830	STOR on page 833	RTOS on page 828	DTOS on page 824	LOWER on page	UPPER on page
				826	835

Function Block

Not available

If you want to convert:	Use this instruction:
ASCII representations of integer values to SINT, INT, DINT, or REAL values (e.g., converting from a weight scale or other ASCII device to an integer so you can use it in your logic).	STOD
ASCII representations of a floating-point value to a REAL value (e.g., converting a value from a weight scale or other ASCII device to a REAL value so you can use it in your logic).	STOR
SINT, INT, DINT, or REAL values to a string of ASCII characters (e.g., converting a variable to an ASCII string so you can send it to a MessageView [™] terminal).	DTOS
REAL values to a string of ASCII characters (e.g., converting a variable to an ASCII string so you can send it to a MessageView terminal).	RTOS
the letters in a string of ASCII characters to upper case (e.g., converting an entry made by an operator to all upper case so you can search for it in an array).	UPPER
the letters in a string of ASCII characters to lower case (e.g., converting an entry made by an operator to all lower case so you can search for it in an array).	LOWER

You can also use the following instructions to compare or manipulate ASCII characters.

If you want to:	Use this instruction:
Add characters to the end of a string	CONCAT
Delete characters from a string	DELETE
Determine the starting character of a sub-string	FIND
Insert characters into a string	INSERT
Extract characters from a string	MID
Rearrange the bytes of an INT, DINT, or REAL tag	SWPB

If you want to:	Use this instruction:
Compare a string to another string	СМР
See if the characters are equal to specific characters	EQ
See if the characters are not equal to specific characters	NE
See if the characters are equal to or greater than specific characters	GE
See if the characters are greater than specific characters	GT
See if the characters are equal to or less than specific characters	LE
See if the characters are less than specific characters	LT
Find a string in an array of strings	FSC

DINT to String-DTOS

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The DTOS instruction produces the ASCII representation of a value.

Available Languages

Ladder Diagram

DTOS	
DINT to String	
Source	?
	??
Dest	?
	??

Function Block

This instruction is not available in function block.

Structured Text

DTOS(Source,Dest);

Operands

Ladder Diagram and Structured Text

Operand	Туре	Format	Description	Notes
Source	SINT	Tag	The tag that contains	If the Source is a REAL,
	INT		the value	the instruction converts it to a DINT value.
	DINT			

Operand	Туре	Format	Description	Notes
	REAL			
Destination	String type	Tag	The tag to store the	String types are:
			integer value	default STRING
				data type
				any new string
				type you create

Description

The DTOS instruction converts the Source to a string of ASCII characters and places the result in the Destination.

Affects Math Status Flags

No

Major/Minor Faults

Туре	Code	Cause	Recovery Method
4	51	The LEN value of the string tag	Check that no instruction is
		is greater than the DATA size	writing to the LEN member of
		of the string tag.	the string type tag.
			In the LEN value, enter the
			number of characters that the
			string contains.
4	52	The output string is larger	Create a new string type that
		than the destination.	is large enough for the output
			string. Use the new string
			type as the data type for the
			destination.

See Common Attributes for operand-related faults.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action
Prescan	See Prescan in the preceding Ladder Diagram table

Condition	Action	
Normal execution	See rung-condition-in is true in the preceding Ladder Diagram table.	
Postscan	See Postscan in the preceding Ladder Diagram table	

Example

When temp_high is set, the DTOS instruction converts the value in msg_num to a string of ASCII characters and places the result in msg_num_ascii. Subsequent rungs insert or concatenate msg_num_ascii with other strings to produce a complete message for a display terminal.

Ladder Diagram

Structured Text

IF temp_high THEN

DTOS(msg_num,msg_num_ascii);

temp_high := 0;

END_IF;

Lower Case-LOWER

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The LOWER instruction converts the alphabetical characters in a string to lower case characters.

Available Languages

Ladder Diagram

	LOWER		
_	Lower Case	-	_
	Source	?	
		??	
	Dest	?	
		??	

Function Block

This instruction is not available in function block.

Structured Text

LOWER(Source,Dest);

Operands

Ladder Diagram and Structured Text

Operand	Туре	Format	Description
Source	String	Tag	The tag that contains the characters you want to convert to lower case
Destination	String	Tag	The tag to store the characters in lower case

See Structured Text for more information on the syntax of expressions within structured text.

Description

The LOWER instruction converts all the letters in the Source to lower case, and places the result in the Destination.

- ASCII characters are case-sensitive. Upper case A (\$41) is not equal to lower case a (\$61).
- If operators directly enter ASCII characters, convert the characters to all upper case or lower case before you compare them.

Any characters in the Source string that are not letters remain unchanged.

Affects Math Status Flags

No

Major/Minor Faults

Туре	Code	Cause	Recovery Method
4	51	The LEN value of the string tag	Check that no instruction is
		is greater than the DATA size	writing to the LEN member of
		of the string tag.	the string type tag.
			In the LEN value, enter the
			number of characters that the
			string contains.
4	52	The output string is larger	Create a new string type that
		than the destination	is large enough for the output
			string. Use the new string
			type as the data type for the
			destination.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action	
Prescan	See Prescan in the preceding Ladder Diagram table	
Normal execution	See rung-condition-in is true in the preceding Ladder Diagram table.	
Postscan	See Postscan in the preceding Ladder Diagram table	

Examples

To find information about a specific item, an operator enters the item number into an ASCII terminal. After the controller reads the input from a terminal (terminal_read is set), the LOWER instruction converts the characters in item_number to all upper case characters and stores the result in item_number_lower_case. A subsequent rung then searches an array for characters that match those in item_number_lower_case.

Ladder Diagram

terminal_read	LOWER Lower Case	
	Source item_number 'ABCD'	
	Dest item_number_lower_case 'abcd'	

Structured Text

IF terminal_read THEN

LOWER(item_number,item_number_lower_case);

terminal_read := 0;

END_IF;

REAL to String (RTOS)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The REAL to String (RTOS) instruction produces the ASCII representation of a REAL value.

Available Languages

Ladder Diagram

	RTOS		
_	Real to String		_
	Source	?	
		??	
	Dest	?	
		??	

Function Block

This instruction is not available in function block.

Structured Text

RTOS(Source,Dest);

Operands

Ladder Diagram and Structured Text

Operand	Туре	Format	Description	Notes
Source	REAL	Tag	The tag that contains the REAL value	
Destination	String type	Tag	The tag to store the ASCII value	String types are: • Default STRING data type • Any new string type you create

See Structured Text Syntax for more information on the syntax of expressions.

Description

The RTOS instruction converts the Source to a string of ASCII characters and places the result in the Destination.

Affects Math Status Flags

No

Major/Minor Faults

Туре	Code	Cause	Recovery Method
4	52	The output string is larger	Create a new string type that
		than the destination	is large enough for the output
			string. Use the new string
			type as the data type for the
			destination.

See Common Attributes for operand-related faults.

Execution

Ladder Diagram

Condition/State	Action Taken	
Prescan	N/A	
Rung-condition-in is false	N/A	
Rung-condition-in is true	The instruction executes.	
Postscan	N/A	


Structured Text

Condition	Action
Prescan	See Prescan in the preceding Ladder Diagram table
Normal execution	See rung-condition-in is true in the preceding Ladder Diagram table.
Postscan	See Postscan in the preceding Ladder Diagram table

Examples

When send_data is set, the RTOS instruction converts the value in data_1 to a string of ASCII characters and places the result in data_1_ascii. Subsequent rungs insert or concatenate data_1_ascii with other strings to produce a complete message for a display terminal.

Ladder Diagram

Structured Text

IF send_data THEN

RTOS(data_1,data_1_ascii);

send_data:= 0;

END_IF;

String to DINT (STOD)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The String to DINT (STOD) instruction converts the ASCII representation of an integer to an integer or REAL value.

Available Languages

Ladder Diagram

STOD		
String To DINT Source	?	
	??	
Dest	?	
	??	

Function Block

This instruction is not available in function block.

Structured Text

STOD(Source,Dest);

Operands

There are data conversion rules for mixed data types within an instructions. See Data Conversion.

Ladder Diagram and Structured Text

Operand	Туре	Format	Description	Notes
Source	String type	Tag	The tag that contains the value in ASCII	 String types are: Default STRING data type Any new string type you create
Destination	SINT INT DINT	Tag	The tag to store the integer value	If the Source value is a floating-point number, the instruction converts only the non-fractional part of the number (regardless of the destination data type).

See Structured Text Syntax for more information on the syntax of expressions.

Description

The STOD instruction converts the Source to an integer and places the result in the Destination.

- The instruction converts positive and negative numbers.
- If the Source string contains non-numeric characters, the STOD converts the first set of contiguous numbers:

The instruction skips any initial control or non-numeric characters, except the minus sign in front of a number.

If the string contains multiple groups of numbers that are separated by delimiters (e.g., /), the instruction converts only the first group of numbers.

Affects Math Status Flags

In Ladder Diagrams only. See Math Status Flags.

Major/Minor Faults

Туре	Code	Cause	Recovery Method
4	51	The LEN value of the string tag is greater than the DATA size of the string tag.	Check that no instruction is writing to the LEN member of the string type tag. In the LEN value, enter the number of characters that the string contains.
4	53	The output number is beyond the limits of the destination data type.	 Reduce the size of the ASCII value, or Use a larger data type for the destination

See Common Attributes for operand-related faults.

Execution

Ladder Diagram

Condition	Action Taken	
Prescan	N/A	
Rung-condition-in is false	N/A	
Rung-condition-in is true	The instruction executes.	
	Destination is cleared	
	The instruction converts the Source.	
Postscan	N/A	

Structured Text

Condition	Action	
Prescan	See Prescan in the preceding Ladder Diagram table	
Normal execution	See rung-condition-in is true in the preceding Ladder Diagram	
	table.	
Postscan	See Postscan in the preceding Ladder Diagram table	

Example

When MV_read.EM is set, the STOD instruction converts the first set of numeric characters in MV_msg to an integer value. The instruction skips the initial control character (\$06) and stops at the delimiter (\).

Ladder Diagram

MV_read.EM	STOD
	String To DINT
	Source MV_msg
	\$06324\12\1\\$r' (
	Dest MV_msg_nmbr
	324 🖛

Structured Text

IF MV_read.EM THEN

STOD(MV_msg,MV_msg_nmbr);

MV_read.EM := 0;

END_IF;

String to REAL (STOR)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The String to REAL (STOR) instruction converts the ASCII representation of a floating-point value to a REAL value.

Available Languages

Ladder Diagram

STOR	
String to Real	-
Source	?
	??
Dest	?
	??

Function Block

This instruction is not available in function block.

Structured Text

STOR(Source,Dest);

Operands

There are data conversion rules for mixed data types within an instructions. See Data Conversion.

Ladder Diagram and Structured Text

Operand	Туре	Format	Description	Notes
Source	String type	tag	The tag that contains the value in ASCII	String types are: Default STRING data type Any new string type you create
Destination	REAL	tag	The tag to store the REAL value	

Structured Text for more information on the syntax of expressions within structured text.

Description

The STOR instruction converts the Source to a REAL value and places the result in the Destination.

- The instruction converts positive and negative numbers.
- If the Source string contains non-numeric characters, the STOR converts the first set of contiguous numbers, including the decimal point [.].

The instruction skips any initial control or non-numeric characters (except the minus sign in front of a number).

If the string contains multiple groups of numbers that are separated by delimiters (e.g., /), the instruction converts only the first group of numbers.

Affects Math Status Flags

Conditional, based on programming language. See Math Status Flags.

Major/Minor Faults

Туре	Code	Cause	Recovery Method
4	51	The LEN value of the string tag	Check that no instruction is
		is greater than the DATA size	writing to the LEN member of
		of the string tag.	the string type tag.
			In the LEN value, enter the
			number of characters that the
			string contains.
4	53	The output number is beyond	Reduce the size of the
		the limits of the destination	ASCII value, or
		data type.	• Use a larger data type for
			the destination

See Common Attributes for operand-related faults.

Execution

Ladder Diagram

Condition	Ladder Diagram Action
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action
Prescan	See Prescan in the preceding Ladder Diagram table
Normal execution	See rung-condition-in is true in the preceding Ladder Diagram
	table.
Postscan	See Postscan in the preceding Ladder Diagram table

Example

After reading the weight from a scale (weight_read is set), the STOR instruction converts the numeric characters in weight_ascii to a REAL value.

You may see a slight difference between the fractional parts of the Source and Destination.

Ladder Diagram

Structured Text

IF weight_read THEN

STOR(weight_ascii,weight);

END_IF;

Upper Case (UPPER)

This information applies to the CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, GuardLogix 5570, Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The UPPER instruction converts the alphabetical characters in a string to upper case characters.

Available Languages

Ladder Diagram

UPPER		
 Upper Case		
Source	?	
	??	
Dest	?	
	??	

Function Block

This instruction is not available in function block.

Structured Text

UPPER(Source,Dest);

Operands

Ladder Diagram and Structured Text

Operand	Туре	Format	Description
Source	String	tag	Tag that contains the characters you want to convert to upper case
Destination	String	tag	Tag to store the characters in upper case

See Structured Text for more information on the syntax of expressions within structured text.

Description

The UPPER instruction converts all the letters in the Source to upper case, and places the result in the Destination.

- ASCII characters are case-sensitive. Upper case A (\$41) is not equal to lower case a (\$61).
- If operators directly enter ASCII characters, convert the characters to all upper case or lower case before you compare them.

Any characters in the Source string that are not letters remain unchanged.

Affects Math Status Flags

No

Major/Minor Faults

Туре	Code	Cause	Recovery Method
4	51	The LEN value of the string tag	Check that no instruction is
		is greater than the DATA size	writing to the LEN member of
		of the string tag.	the string type tag.

Туре	Code	Cause	Recovery Method
			In the LEN value, enter the number of characters that the string contains.
4	52	The output string is larger than the destination	Create a new string type that is large enough for the output string. Use the new string type as the data type for the destination.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	The instruction executes.
Postscan	N/A

Structured Text

Condition	Action
Prescan	See Prescan in the preceding Ladder Diagram table
Normal execution	See rung-condition-in is true in the preceding Ladder Diagram
	table.
Postscan	See Postscan in the preceding Ladder Diagram table

Example

To find information about a specific item, an operator enters the catalog number of the item into an ASCII terminal. After the controller reads the input from a terminal (terminal_read is set), the UPPER instruction converts the characters in catalog_number to all upper case characters and stores the result in catalog_number_upper_case. A subsequent rung then searches an array for characters that match those in catalog_number_upper_case.

Ladder Diagram

UPPER	
Source catalog_number 'abcd' Dest catalog_number_upper_case	
	Upper Case Source catalog_number 'abcd' (

Structured Text

IF terminal_read THEN

UPPER(catalog_number,catalog_number_upper_case);

terminal_read := 0;

END_IF;

Debug Instructions

These instructions are compatible only with Studio 5000 Logix Emulate software, which enables emulating a Logix 5000 controller on a personal computer. These instructions are not compatible with emulated 5580 controllers.

Use the debug instructions to monitor the state of the logic when it is in conditions that you determine.

Available Instructions

TPT on page 842 BPT on page 839

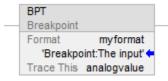
Function Block

Not available

Structured Text

Not available

If you want to:	Use this instruction:
Stop program emulation when a rung is true	ВРТ
Log data you select when a rung is true.	ТРТ


Breakpoints (BPT)

This instruction is compatible with Studio 5000 Logix Emulate controllers only. This instruction is not compatible with emulated 5580 controllers.

Use the debug instructions to monitor the state of your logic when it is in conditions that you determine.

Available Languages

Ladder Diagram

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

There are data conversion rules for mixed data types within an instruction. See Data conversions on page 851.

Ladder Diagram

Operand	Туре	Format	Description
Format	String	Tag	A string that sets the formatting for the text that appears in the trace window for the breakpoint.
Trace This	BOOL, SINT, INT, DINT, REAL	Tag	The tag that has a value you want to display in the trace window.

Description

Breakpoints are programmed with the Breakpoint output instruction (BPT). When the inputs on a rung containing a BPT instruction are true, the BPT instruction stops program execution. The software displays a window indicating that the breakpoint triggered and the values that triggered it.

Slot #0 Breakpoint
Stopped At Breakpoint. OK to Continue?
ОК

When a breakpoint triggers, the emulator displays a window informing you that a breakpoint occurred. The title bar of the window shows the slot containing the emulator that encountered the breakpoint.

When you click OK, the emulator resumes program execution. If the conditions that triggered the breakpoint persist, the breakpoint will recur.

In addition, the emulator opens a trace window for the breakpoint. The trace window displays information about the breakpoint and the values.

IMPORTANT: When a breakpoint triggers, you will not be able to edit your project until you permit the execution to continue. You can go online with the emulator to observe the state of your project, but you will not be able to edit it. If you try to accept a rung edit while a breakpoint is triggered, you will see a dialog box saying the controller is not in the correct mode.

String Format

With the Format string in the tracepoint and breakpoint instructions, you can control how the traced tags appear in the traces or breakpoint windows. The format of the string is:

heading:(text)%(type)

where heading is a text string identifying the tracepoint or breakpoint, text is a string describing the tag (or any other text you choose), and %(type) indicates the format of the tag. You need one type indicator for each tag you are tracing with the tracepoint or breakpoint instruction.

For example, you could format a tracepoint string as shown.

• My tracepoint:Tag 1 = %e and Tag 2 = %d

The %e formats the first traced tag as double-precision float with an exponent, and %d formats the second traced tag as a signed decimal integer.

In this case, you would have a tracepoint instruction that has two Trace This operands (one for a REAL and one for an INT, although the value of any tag can be formatted with any flag).

The resulting tracepoint window that would appear when the tracepoint is triggered would look like the example.

The slot number indicates the slot containing the emulator module that has the tracepoint breakpoint being traced in the trace window	or in the format string) appears here.
	Slot 0: My Tracepoint
	Tag 1 = 6.488484e+002 and Tag 2 = 443 Tag 1 = 6.617994e+002 and Tag 2 = 447
The test for the REAL (represented in the format string as %e) appears here.	
The text for the INT (represented in the format string as %d) appears here.	Freeze Display Freeze Log
	Clear Display

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Common Attributes for General Instructions on page 849 for operand-related faults.

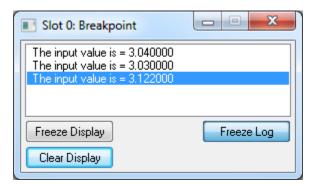
Execution

Condition	Action Taken	
Prescan	The rung becomes false.	
Rung-condition-in is false	The rung becomes false.	
Rung-condition-in is true The rung becomes true.		
	Execution jumps to the rung that contains the LBL instruction	
	with the referenced label name.	
Postscan	The rung becomes false.	

Examples

You can display many tag values with the BPT instruction. However, the formatting string can contain only 82 characters. Because the formatting string requires two characters for each tag you want in the breakpoint, you cannot trace more than 41 tags with a single BPT instruction. However, to separate tag data in your traces, you will need to include spaces and other formatting, thus reducing the number of tag values that one BPT instruction can effectively display to far fewer than 41.

This rung shows a breakpoint that stops program execution when an analog value is greater than 3.02 or less than 2.01.

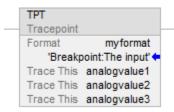

GEQ Grtr Than or Eql (A>=B)	BPT Breakpoint
Source A analogvalue	Format myformat 'Breakpoint:The input'
Source B 3.02	Trace This analogvalue
LEQ	
Less Than or Eql (A<=B)	
Source A analogvalue	
0.0 🖛	
Source B 2.01	

Display the breakpoint information in the Format string (myformat). In this case, the format string contains the following text:

Breakpoint:The input value is %f

When the breakpoint triggers, the breakpoint trace window shows the characters before the colon ('Breakpoint') in the title bar of the trace window. The other characters make up the traces. In this example, %f represents the first (and in this case, the only) tag to be traced ('analogvalue').

The resulting traces appear as shown here.


Tracepoints (TPT)

This instruction is compatible with Studio 5000 Logix Emulate controllers only. This instruction is not compatible with emulated 5580 controllers.

Tracepoints log data you select when a rung is true.

Available Languages

Ladder Diagram

Function Block

This instruction is not available in function block.

Structured Text

This instruction is not available in structured text.

Operands

There are data conversion rules for mixed data types within an instruction. See Data conversions on page 851.

Ladder Diagram

Operand	Туре	Format	Description
Format	String	Tag	A string that sets the
			formatting for the trace
			reports (both on-screen and
			logged to disk).
Trace This	BOOL	Tag	The tag you want to trace.
	SINT		
	INT		
	DINT		
	REAL		

Description

Tracepoints are programmed with the tracepoint output instruction (TPT). When the inputs on a rung containing a TPT instruction are true, the TPT instruction writes a trace entry to a trace display or log file.

You can trace many tags with the TPT instruction. However, the formatting string can contain only 82 characters. Because the formatting string requires two characters for each tag you want to trace, you cannot trace more than 41 tags with a single TPT instruction. However, to separate tag data in your traces, you will need to include spaces and other formatting, thus reducing the number of tags that one TPT instruction can effectively trace to far fewer than 41.

String Format

•

With the Format string in the tracepoint and breakpoint instructions, you can control how the traced tags appear in the traces or breakpoint windows. The format of the string is as shown here:

heading:(text)%(type)

where heading is a text string identifying the tracepoint or breakpoint, text is a string describing the tag (or any other text you choose), and %(type) indicates the format of the tag. You need one type indicator for each tag you are tracing with the tracepoint or breakpoint instruction.

For example, you could format a tracepoint string as shown:

• My tracepoint:Tag 1 = %e and Tag 2 = %d

The %e formats the first traced tag as double-precision float with an exponent, and %d formats the second traced tag as a signed decimal integer.

In this case, you have a tracepoint instruction that has two Trace This operands (one for a REAL and one for an INT, although the value of any tag can be formatted with any flag).

The resulting tracepoint window that would appear when the tracepoint is triggered would look like the example.

The slot number indicates the slot containing the emulator module that has the tracepoint breakpoint being traced in the trace window	or in the format string) appears here.
	Slot 0: My Tracepoint
	Tag 1 = 6.488484e+002 and Tag 2 = 443 Tag 1 = 6.617994e+002 and Tag 2 = 447
The test for the REAL (represented in the format string as %e) appears here.	
The text for the INT (represented in the	
format string as %d) appears here.	Freeze Display Freeze Log
	Clear Display

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction. See Common Attributes for General Instructions on page 849 for operand-related faults.

Execution

Condition	Relay Ladder Action
Prescan The rung becomes false.	
Rung-condition-in is false	The rung becomes false.
Rung-condition-in is true The rung becomes true. Execution jumps to the rung becomes true.	
Postscan	The rung becomes false.

Example

GRT	TPT	
Greater Than (A>B)	Tracepoint	_
Source A analogval	ue1 Format m	yformat
	0.0	ie inpuť 🗲
Source B 30	.01 Trace This analog	gvalue1
	Trace This analog	gvalue2
	Trace This analog	gvalue3
GRT		
Greater Than (A>B)		
Source A analogval	102	
-		
	0.0 ←	
Source B 30	.01	
GRT		
Greater Than (A>B)		
Source A analogval	Je3	
_	0.0 🗲	
Source B 30	.01	

This rung triggers a trace of three analog values when any one of them exceeds a given value (30.01).

Display the tracepoint information in the Format string (myformat).

In this case, the format string contains this text:

• Analog inputs trace: Analog inputs = %f, %f, and %f

When the tracepoint triggers, the characters before the colon ('Analog inputs trace') appear in the title bar of the trace window. The other characters make up the traces. In this example, %f represents the tags to be traced ('analogvalue1,' 'analogvalue2,' and 'analogvalue3').

The resulting traces appear as shown here.

Slot 0: Analog inputs	trace
Analog inputs = 30.224001 Analog inputs = 30.320000	1, 30.282000 and 30.110001 1, 30.214001 and 30.226000 0, 30.233000 and 30.422001 0, 30.346001 and 30.445999
Freeze Display	Freeze Log
Clear Display	Frieeze Lug

When this trace is logged to disk, the characters before the colon appear in the traces.

This indicates which tracepoint caused which trace entry. This is an example of a trace entry. 'Analog inputs trace:' is the heading text from the tracepoint's format string.

Analog inputs trace: Analog inputs = 31.00201, 30.282000, and 30.110001.

License Instructions

Use the License instruction to verify licenses in a project.

Available Languages

Ladder Diagram

LV on page 847

License Validation (LV)

This information applies to the Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

The License Validation (LV) instruction verifies if a non-expired license associated with a routine or Add-On Instruction is present in the controller.

Available Languages

Ladder Diagram

	LV		
_	License Validation		
	Vendor Code	?	
	Product Code	?	

Function Block

Not available

Structured Text

Not available

Operands

Ladder Diagram

Operand	Туре	Format	Description
Vendor Code	DINT	immediate	Unique number identifying
			the vendor of the license
			associated with a routine or
			Add-On Instruction.
			Accepts an immediate integer
			value in the range of 0 to
			2,147,483,647.

Operand	Туре	Format	Description
Product Code	DINT	immediate	Unique number identifying the
			product code of the license
			associated with a routine or
			Add-On Instruction.
			Accepts an immediate integer
			value in the range of 0 to
			2,147,483,647.

Affects Math Status Flags

No

Major/Minor Faults

None specific to this instruction.

Execution

Ladder Diagram

Condition/State	Action Taken
Prescan	N/A
Rung-condition-in is false	N/A
Rung-condition-in is true	Numeric compare"
	If the license is valid and used in the project
	Set Rung-condition-out to true
	else
	Clear Rung-condition-out to false
Postscan	N/A

Example

LV			License_Validation
License Valida	ition		
Vendor Code	102608		
Product Code	1002		
		_	
LV License Valida	tion	_	License_Validation
		_	License_Validation

Common Attributes for General Instructions

Follow the guidelines in this chapter for the common attributes for the General Instructions.

Math status flags

Follow these guidelines for Math Status Flags.

Description

A set of Math Status Flags for accessing directly with instructions. These flags are only updated in ladder diagram routines, and are not tags, and flag aliases are not applicable.

Status Flags

This table describes that specific status flags.

Status Flag	Description	
S:FS	The first scan flag is set by the controller:	
First scan flag	• The first time a program is scanned after the controller	
	goes to Run mode	
	• The first time a program is scanned after the program is	
	uninhibited	
	• When a routine is called from an SFC Action and the step	
	that owns that Action is first scanned.	
	Use the first scan flag to initialize data for use in later scans.	
	is also referred to as the first pass bit.	
S:N	The controller sets the negative flag when the result of a mat	
Negative flag	or logical operation is a negative value. Use this flag as a quic	
	test for a negative value.	
S:Z	The zero flag is set by the controller when the result of a math	
Zero flag	or logical operation is zero. Use this flag as a quick test for a	
	zero value.	
	The zero flag clears at the start of executing an instruction	
	capable of setting this flag.	
S:V	The controller sets the overflow flag when:	
Overflow flag	• The result of a math operation results in an overflow.	
	For example, adding 1 to a SINT generates an overflow	
	when the value goes from 127 through -128.	
	• The destination tag is too small to hold the value.	
	For example, if you try to store the value 123456 to a SIN	
	or INT tag.	
	Use the overflow flag to verify the result of an operation is sti	
	in range.	

Status Flag	Description		
	If the data being stored is a string type, S:V is set if the string is		
	too large to fit into the destination tag.		
	If applicable, set S:V with an OTE or OTL instruction.		
	Select Controller Properties > Advanced tab > Report		
	Overflow Faults to enable or disable reporting overflow faults.		
	If an overflow occurs while evaluating an array subscript, a		
	minor fault is generated and a major fault is generated to		
	indicate the index is out of range.		
S:C	The controller sets the carry flag when the result of a math		
Carry flag	operation resulted in the generation of a carry out of the most		
	significant bit.		
	Only the ADD and SUB instructions, and not the + and -		
	operators, with integer values affect this flag.		
S:MINOR	The controller sets the minor fault flag when there is at least		
Minor fault flag	one minor program fault.		
	Use the minor fault tag to test if a minor fault occurred. This bit		
	only triggers by programming faults, such as overflow. It is not		
	triggered by a battery fault. The bit clears at the beginning of		
	every scan.		
	If applicable, explicitly set S:MINOR with an OTE or OTL		
	instruction.		

IMPORTANT: The math status flags are set based on the stored value. Instructions that normally do not affect math status flags might appear to affect math status flags if type conversion occurs from mixed data types for the instruction parameters. The type conversion process sets the math status flags.

Expressions in Array Subscripts

Expressions do not set status flags based on the results of math operations. If expressions overflow:

- A minor fault generates if the controller is configured to generate minor faults.
- A major fault (type 4, code 20) generates because the resulting value is out of range.

Tip: If an array subscript is too large (out of range), a major fault (type 4, code 20) generates.

Immediate values

When you enter an immediate value (constant) in decimal format (for example, -2, 3) the controller stores the value by using 32 bits. If you enter a value in a radix other than decimal, such as binary or hexadecimal, and do not specify all 32 bits, the controller places a zero in the bits that you do not specify (zero-fill).

IMPORTANT: Zero-fill of immediate binary, octal or hexadecimal values less than 32 bits.

lf you enter	The controller stores
-1	16#ffff ffff (-1)
16#ffff (-1)	16#0000 ffff (65535)
8#1234 (668)	16#0000 029c (668)
2#1010 (10)	16#0000 000a (10)

Integer Immediate Values

lf you enter	The controller stores
Without any suffix	DINT
"U"	UDINT
"L"	LINT
"UL"	ULINT

Floating Point Immediate Values

lf you enter	The controller stores
Without any suffix	REAL
"L"	LREAL

Data conversions

Data conversions occur when mixing data types in programming. When programming ladder diagram, mix data types for the parameters within one instruction or expression.

Instructions execute faster and require less memory if all the operands of the instruction use:

- The same data type.
- An intermediate data type:
 - If mixing data types or use tags that are not the optimal data type, the controller converts the data according to these rules:
 - Operands are converted according to the ranking of data types from SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL, and LREAL with ranking from 1 (the lowest) to 10 (the highest).

Tip: To reduce the time and memory for converting data, use the same data type for all the operands of an instruction.

Convert SINT or INT to DINT or DINT to LINT

A SINT or INT input source tag gets promoted to a DINT value by a sign-extension for Source Tag. Instructions that convert SINT or INT values to DINT values use one of the following conversion methods.

This conversion method	Converts data by placing
Sign-extension	The value of the leftmost bit (the sign of the value) into each bit
	position to the left of the existing bits until there are 32 or 64
	bits.

This conversion method	Converts data by placing
Zero-fill	Zeros to the left of the existing bits until there are 32 or 64 bits.

Logical instructions use zero fill. All other instructions use sign-extension

The following example shows the results of converting a value using sign- extension and zero-fill.

This value	2#1111_1111_1111	(-1)
Converts to this value by sign-extension	2#1111_1111_1111_1111_1111_1111_1111_11	(-1)
Converts to this value by zero-fill	2#0000_0000_0000_0000_1111_1111_1111_1	(65535)
	111	

If you use a SINT or INT tag and an immediate value in an instruction that converts data by sign-extension, use one of these methods to handle immediate values.

Specify any immediate value in the decimal radix.

If you enter the value in a radix other than decimal, specify all 32 bits of the immediate value. To do so, enter the value of the leftmost bit into each bit position to its left until there are 32 bits.

Create a tag for each operand and use the same data type throughout the instruction. To assign a constant value, either:

Enter it into one of the tags.

Add a MOV instruction that moves the value into one of the tags.

Use a MEQ instruction to check only the required bits.

The following examples show two ways to mix an immediate value with an INT tag. Both examples check the bits of a 1771 I/O module to determine if all the bits are on. Since the input data word of a 1771 I/O module is an INT tag, it is easiest to use a 16-bit constant value.

IMPORTANT:

- When mixing an INT tag with an immediate value, since remote_rack_1:1.Data[0] is an INT tag, the value to check it against is also entered as an INT tag. When mixing an INT tag with an immediate value, since remote_rack_1:1.Data[0] is an INT tag, the value to check it against is also entered as an INT tag.
- When mixing an INT tag with an immediate value, since remote_rack_1:1.Data[0] is an INT tag, the value to check it against first moves into int_0, also an INT tag. The EQU instruction then compares both tags.

Convert Integer to REAL

The controller stores REAL values in IEEE single-precision, floating-point number format. It uses one bit for the sign of the value, 23 bits for the base value, and eight bits for the exponent (32 bits total). If you mix an integer tag (SINT,

INT, or DINT) and a REAL tag as inputs in the same instruction, the controller converts the integer value to a REAL value before the instruction executes.

- A SINT or INT value always converts to the same REAL value.
- A DINT value may not convert to the same REAL value:
- A REAL value uses up to 24 bits for the base value (23 stored bits plus a 'hidden' bit).
- A DINT value uses up to 32 bits for the value (one for the sign and 31 for the value).

If the DINT value requires more than 24 significant bits, it might not convert to the same REAL value. If it will not, the controller stores the uppermost 24 bits rounded to the nearest even value.

NOTE: The Logix Designer application interprets numbers differently depending on whether the controller model is a 5x80 controller or a 5x70 controller. For example:

- For a 5x70 controller, Logix Designer interprets literal 2 as a REAL.
- For a 5x80 controller, Logix Designer interprets literal 2 as a DINT.

Convert DINT to SINT or INT

To convert a DINT value to a SINT or INT value, the controller truncates the upper portion of the DINT and stores the lower bits that fit in the data type. If the value is too large the conversion generates an overflow.

Convert a DINT to an INT and a SINT

This DINT value	Converts to this smaller value	
16#0001_0081 (65,665)	INT	16#0081 (129)
	SINT	16#81 (-127)

Convert REAL to SINT, INT, or DINT

To convert a REAL value to an integer value, the controller rounds any fractional part and stores the bits that fit in the result data type. If the value is too large the conversion generates an overflow.

Numbers round as in the following examples.

Fractions < 0.5 round down to the nearest whole number.

Fractions > 0.5 round up to the nearest whole number.

Fractions = 0.5 round up or down to the nearest even number.

Conversion of REAL values to DINT values

This REAL value	Converts to this DINT value
-2.5	-2
-3.5	-4
-1.6	.2
-1.5	.2
-1.4	.1

This REAL value	Converts to this DINT value
1.4	1
1.5	2
1.6	2
2.5	2
3.5	4

Elementary data types

The controller supports the elementary data types defined in IEC 1131-3 defined data types. The elementary data types are:

Data type	Description	Range
BOOL	1-bit boolean	0 = cleared
		1 = set
SINT	1-byte integer	-128 to 127
INT	2-byte integer	-32,768 to 32,767
DINT	4-byte integer	-2,147,483,648 to 2,147,483,647
REAL	4-byte floating-point number	-3.402823E to -1.1754944E
		(negative values)
		and
		0
		and
		-38 38 1.1754944E to 3.402823E
		(positive values)
LINT	8-byte integer	0 to 32,535,129,599,999,999
USINT	1-byte unsigned integer	0 to 255
UINT	2-byte unsigned integer	0 to 65,535
UDINT	4-byte unsigned integer	0 to 4,294,967,295
ULINT	8-byte unsigned integer	0 to 18,446,744,073,709,551,615
REAL	4-byte floating-point number	-3.4028235E38 to -1.1754944E-38
		(negative values)
		and
		0.0
		and
		1.1754944E-38 to 3.4028235E38
		(positive values)

Data type	Description	Range
		-2.2250738585072014E-308
		(negative values)
		and
		0.0
		and
		2.2250738585072014E-308 to
		1.7976931348623157E308
		(positive values)

The controller handles all immediate values as DINT data types.

Data type conversions

Result			
The controller truncates the upper portion of the larger integer and generates an overflow.			
For example:	For example:		
Decimal		Binary	
DINT	65,665	0000_0000_0000_0001_0000_ 0000_1000_0001	
INT	129	0000_0000_1000_0001	
SINT	-127	1000_0001	
No data precision is lo	No data precision is lost		
Data precision could be lost. Both data types store data in 32 bits, but the REAL type uses some of its 32 bits to store the exponent value. If precision is lost, the controller takes it from the least-significant portion of the DINT.			
No data precision is lost.			
Data precision could be lost.			
Data precision could be lost. If the source value is too big to fit into destination the controller stores what it can and may produce an overflow.			
If the integer value has more significant bits than can be stored in the destination, the lower bits will be truncated.			
If the source value is too big to fit into destination, the controller stores what it can and may produce an overflow.			
If the source value is too big to fit into destination, the controller stores what it can and may produce an overflow.			
The controller rounds the fractional part and truncates the upper portion of the non-fractional			
	,		
	The controller truncat For example: Decimal DINT INT SINT No data precision is log Data precision could t of its 32 bits to store t least-significant porti No data precision could t of its 32 bits to store t least-significant porti No data precision could t stores what it can and If the integer value ha will be truncated. If the source value is produce an overflow. If the source value is sort. produce an overflow. The controller rounds part. If data is lost, th Rounding is to the near	The controller truncates the upper portion of the large For example: Decimal DINT 65,665 INT 129 SINT -127 No data precision is lost 0 at a precision could be lost. Both data types store d of its 32 bits to store the exponent value. If precision least-significant portion of the DINT. No data precision could be lost. Data precision could be lost. Data precision could be lost. Data precision could be lost. Data precision could be lost. Data precision could be lost. Data precision could be lost. Data precision could be lost. If the integer value has more significant bits than cawill be truncated. If the source value is too big to fit into destination, to produce an overflow. If the source value is too big to fit into destination, to produce an overflow. The controller rounds the fractional part and truncate part. If data is lost, the controller sets the overflow sets Rounding is to the nearest whole number: less than 0.5, round down; equal to 0.5, round to near Data precision could down; equal to 0.5, round to near	

REAL (source)	DINT (result)	
1.6	2	
-1.6	-2	
1.5	2	
-1.5	-2	
1.4	1	
-1.4	-1	
2.5	2	
-2.5	-2	

Do not convert data to or from the BOOL data type.

IMPORTANT: The math status flags are set based on the value being stored. Instructions that normally do not affect math status keywords might appear to do so if type conversion occurs because of mixed data types for the instruction parameters. The type conversion process sets the math status keywords.

Safety Data Types

The Logix Designer application prevents the modification of a User Defined or Add-On Defined type that would cause an invalid data type for User Defined or Add-On Defined types that are referenced directly or indirectly by a Safety tag. (This includes nested structures.)

Safety tags can be composed of the following data types:

- All elementary data types.
- Predefined types that are used for safety application instructions.
- User-defined data types or arrays that are composed of the previous two types.

Online edits of user-defined data type member names in safety tags

Online editing is allowed for member names of user-defined data types on CompactLogix 5380, Compact GuardLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers. However, online editing is disabled when a user-defined data type is used on a safety tag and the controller is in the Safety Secured state.

Related information

Math status flags on page 849

Pseudo-operand initialization

Pseudo-operands are placeholders for instruction backing tag structure members.

IMPORTANT: When you use an instruction backing tag for a safety-critical operation, you must initialize the pseudo-operands during first scan. Refer to the GuardLogix 5580 and Compact GuardLogix 5380 Controller Systems Safety Reference, publication 1756-RM012, for methods to initialize pseudo-operands during first scan.

Pseudo-operands are initialized when the application is downloaded and never again, unless modified by the application.

- When you specify a pseudo-operand value it is written directly to the member. If you use the same backing tag in another instruction and specify a different value, the previous value is overwritten by the new value.
- Position (POS) and Accumulator (ACC) are initialized as described but they are also overwritten by the instruction when it executes.

For example:

0

•

- A false Timer on delay (TON) instruction sets the ACC to 0.
 - A true TON calculates the elapsed time and adds this to the ACC.
 - Preset (PRE) is used by the TON to determine when the DN bit should be set. The instruction does
 not change the PRE member.
- When a LIFO Load (LFL) instruction executes (false-to-true transition), the source value is written to the LIFO and the POS is incremented.
- When a LIFO Unload (LFU) instruction executes, the value at array[POS] is read and the POS is decremented.

This table lists the pseudo-operands.

Tip: ASCII Serial Port instructions (AWT, AWA, ARD, ARL, ABL, ACB, AHL, and ACL) are available only on controllers that have serial ports. Logix Designer versions 37 and later do not support ASCII Serial Port instructions.

	[
Instructions	Pseudo-operands	Allowed in safety routines
ASCII Test for Buffer Line (ABL)	POS	No
ASCII Chars in Buffer (ACB)	POS	No
ASCII Handshake Lines (AHL)	POS	No
ASCII Read (ARD)	LEN, POS	No
ASCII Read Line (ARL)	LEN, POS	No
File Average (AVE)	LEN, POS	No
ASCII Write Append (AWA)	LEN, POS	No
ASCII Write (AWT)	LEN, POS	No
Bit Shift Left (BSL)	LEN	No
Bit Shift Right (BSR)	LEN	No
Count Up (CTU)	PRE, ACC	Yes
Count Down (CTD)	PRE, ACC	Yes
Diagnostic Detect (DDT)	LEN, POS	No
File Arithmetic and Logic (FAL)	LEN, POS	Yes
File Bit Comparison (FBC)	LEN, POS	No
FIFO Load (FFL)	LEN, POS	No
FIFO Unload (FFU)	LEN, POS	No
File Search and Compare (FSC)	LEN, POS	Yes

LIFO Load (LFL)	LEN, POS	No
LIFO Unload (LFU)	LEN, POS	No
Retentive Timer On (RTO)	PRE, ACC	Yes
Sequencer Input (SQI)	LEN, POS	No
Sequencer Load (SQL)	LEN, POS	No
Sequencer Output (SQO)	LEN, POS	No
File Sort (SRT)	LEN, POS	No
File Standard Deviation (STD)	LEN, POS	No
Timer Off Delay (TOF)	PRE, ACC	Yes
Timer On Delay (TON)	PRE, ACC	Yes

Time and date data types

Use time and date data types to standardize time and date values in Logix5000 control systems. Standardized time and date values increase the accuracy and reliability of time-stamped inputs, scheduled outputs, and timebased registration for motion control. They also help increase accuracy for Sequence of Events, Time-stamped Data Logging and Analytics, and Time Synchronization within and across systems.

In the ladder editor, time and date data types are supported in these instructions: ADD, CLR, EQ, GE, GSV, GT, JSR, LE, LT, MOVE, NE, RET, SBR, SUB, and SSV.

In Structured Text (ST), you can use Time and date data types with these single operator expressions and instructions:

- Single operator expressions: +, -, =, >=, >, <=, <, and <>
- Instructions: GSV, JSR, RET, SBR, and SSV

In the Function Block Diagram (FBD) editor, time and date data types are supported in these functions and instructions:

- Functions: ADD__F, SUB__F, MOVE (IREF->OREF), EQ__F, GE__F, GT__F, LE__F, LT__T, and NE__F
- Instructions: JSR, SBR, and RET

Absolute time data types

Use these absolute time data types for a specific point in time.

Data type	Description
DT	Date and time. 64-bit storage; units are in microseconds.
LDT	Long date and time. 64-bit storage; units are in nanoseconds.

Relative time data types

Use these relative time data types for a duration or length of time.

Data type	Description
TIME32	Duration of time. 32-bit storage; units are in microseconds.

Data type	Description
TIME	Duration of time. 64-bit storage; units are in microseconds.
LTIME	Long duration of time. 64-bit storage; units are in nanoseconds.

Considerations

Keep these considerations in mind when using relative time (LTIME, TIME32, TIME) and absolute time (LDT, DT) data types:

- Use the Move (MOVE) instruction as a bridge between systems adopting time and date data types and legacy systems. Using time and date data types and LINT data types with MOVE allows the Logix Designer application to carry out a straight memory copy.
- You cannot mix time and date operands with any other kind of data type except LINT. LINT data types were
 often used in legacy systems for time stamping, so they are the only data types that are interoperable with
 the time and date data types. The system allows LINTs to be used broadly but it assumes that every LINT is an
 LDT data type, and type conversion occurs based on that assumption. Systems using LINT microsecond tags
 would need to:
 - Manage that discrepancy wherever a LINT microsecond tag is used, or
 - MOVE its value to a DT tag, or
 - Convert the LINT microsecond tag to nanoseconds and then MOVE that value to an LDT tag.
- For Add (ADD), Subtract (SUB), and Compare Instructions:
 - If both Source A and Source B are relative time, the Dest must be relative time.
 - If Source A is relative time and Source B is absolute time or vice versa, the Dest must be absolute time.
 - In ADD instructions, Source A and Source B cannot both be absolute time.

Relative time formats

0

Literal string and Tag display formats:

T32#2d_3h_1m_22s_123ms_678us T#8h_33s_234ms_679us

11#105_322ms

You can modify relative time literal strings directly inline.

You can modify relative time tags directly inline or in the **Time Browser**. To use the **Time Browser** in a routine, double-click the tag value. In the **Data Monitor**, select the ellipsis to open the **Time Browser** or replace any portion of the relative time tag string using its literal string format.

Absolute time formats

Literal string and Tag display formats:

DT#2020-03-05-08:11:44.345_678 LDT#2020-10-25-11:05:20.123_456_789

You can modify absolute time literal strings directly inline.

You can modify absolute time tags directly inline or in the **Time Browser**. To use the **Time Browser** in a routine, double-click the tag value. In the **Data Monitor**, select the ellipsis to open the Time Browser or replace any portion of the absolute time tag string using its literal string format.

GSV and SSV objects that support time and date data types

Use time and date data types to standardize time and date values in Logix control systems.

These tables list the Get System Value (GSV) and Set System Value (SSV) objects that support time and date data types. See GSV/SSV Objects on page 271 for a list of data types supported by each attribute.

GSV object attributes that support time and date

Object	Attribute
CST	CurrentValue
Message	ConnectionRate
	UnconnectedTimeout
Axis	Registration 1 Time
	Registration 2 Time
	Interpolation Time
MotionGroup	CycleStartTime
	MaximumInterval
	MinimumInterval
	StartTime
	TaskAveragelOTime
	TaskAverageScanTime
	TaskLastIOTime
	TaskLastScanTime
	TaskMaximuml0Time
	TaskMaximumScanTime
	TimeOffset
Program	LastScanTime
	MaxScanTime
Task	LastScanTime
	MaximumInterval
	MaxScanTime
	MinimumInterval
	StartTime
TimeSynchronize	CurrentTimeMicroseconds
	CurrentTimeNanoseconds
WallClockTime	CSToffset
	CurrentValue

SSV object attributes that support time and date

	l	
Object	Attribute	
Message	ConnectionRate	
	UnconnectedTimeout	
Axis	Interpolation Time	
MotionGroup	MaximumInterval	
	TaskAveragelOTime	
	TaskAverageScanTime	
	TaskMaximuml0Time	
	TaskMaximumScanTime	
Program	LastScanTime	
	MaxScanTime	
Task	LastScanTime	
	MaxScanTime	
	MinimumInterval	
	StartTime	
WallClockTime	CToffset	
	CurrentValue	

Floating Point Values

Logix controllers handle floating point values according to the IEEE 754 standard for floating-point arithmetic. This standard defines how floating point numbers are stored and calculated. The IEEE 754 standard for floating point math was designed to provide speed and the ability to handle very large numbers in a reasonable amount of storage space.

A REAL tag stores a single-precision, normalized floating-point number.

An LREAL tag stores a double-precision, normalized floating-point number.

The controllers support these elementary data types:

- REAL
- LREAL

Denormalized numbers and -0.0 are treated as 0.0

If a computation results in a NAN value, the sign bit could be positive or negative. In this situation, the software displays 1#.NAN with no sign.

Not all decimal values can be exactly represented in this standard format, which results in a loss of precision. For example, if you subtract 10 from 10.1, you expect the result to be 0.1. In a Logix controller, the result could very well be 0.10000038. In this example, the difference between 0.1 and 0.10000038 is .000038%, or practically zero. For most operations, this small inaccuracy is insignificant. To put things in perspective, if you were sending a floating point value to an analog output module, there would be no difference in the output voltage for a value being sent to the module that differs by .000038%.

Guidelines for Floating-point Math Operations

Follow these guidelines:

When performing certain floating-point math operations, there may be a loss of precision due to rounding error. Floating-point processors have their own internal precision that can impact resultant values.

Do not use floating point math for money values or for totalizer functions. Use INT or DINT values, scale the values up, and keep track of the decimal place (or use one INT or DINT value for dollars, and a second INT or DINT value for cents).

Do not compare floating-point numbers. Instead, check for values within a range. The LIMIT instruction is provided specifically for this purpose.

Totalizer Examples

The precision of the REAL data type affects totalization applications such that errors occur when adding very small numbers to very large numbers.

For example, add 1 to a number over a period of time. At some point the add will no longer affect the result because the running sum is much greater than 1, and there are not enough bits to store the entire result. The add stores as many upper bits as possible and discards the remaining lower bits.

To work around this, do math on small numbers until the results get large. Then, transfer them to another location for additional large-number math. For example:

- x is the small incremented variable.
- y is the large incremented variable.
- z is the total current count that can be used anywhere.
- x = x+1;
- if x = 100,000;
- {
- y = y + 100,000;
- x = 0;
- }
- z = y + x;

Or another example:

- x = x + some_tiny_number;
- if (x >= 100)
- {
- z = z + 100;
- x = x 100; // there might be a tiny remainder
- }

FBD Functions

This information applies to the Compact GuardLogix 5380, CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, and GuardLogix 5580 controllers.

FBD Functions are implemented in accordance with IEC 61131-3 Edition 3. Arithmetic and Numeric functions are provided in the Function Block Diagram language. Ladder Diagram and Structured Text languages include Arithmetic and Numeric as operators and functions.

FBD Functions have one or more inputs and one output. FBD Functions are implemented for efficiency, have smaller footprints and use less system resources to operate than FBD Function Blocks.

FBD Functions

- Require all inputs and outputs. All inputs must be of a supported data type.
- Do not have backing tags or predefined data types. Connected input values do not convert to predefined data types.
- Do not have EnableIn bits and are always executed.

Example: Add Function

Index through arrays

To dynamically change the array element that your logic references, use tag or expression as the subscript to point to the element. This is similar to indirect addressing in PLC-5 logic. You can use these operators in an expression to specify an array subscript:

Operator	Description
+	add
-	subtract/negate
*	multiply
1	divide
AND	AND
FRD	BCD to integer
МОТ	complement
OR	OR
ТОД	integer to BCD
SOR	square root
XOR	exclusive OR

For example:

Definitions	Example	Description
my_list defined as DINT[10]	my_list[5]	This example references element 5 in the
		array. The reference is static because the
		subscript value remains constant.
my_list defined as DINT[10]	MOV the value 5 into position	This example references element 5 in the
position defined as DINT	my_list[position]	array. The reference is dynamic because

Definitions	Example	Description
		the logic can change the subscript by changing the value of position.
my_list defined as DINT[10] position defined as DINT offset defined as DINT	MOV the value 2 into position MOV the value 5 into offset my_list[position+offset]	This example references element 7 (2+5) in the array. The reference is dynamic because the logic can change the subscript by changing the value of position or offset.

Make sure any array subscript you enter is within the boundaries of the specified array. Instructions that view arrays as a collection of elements generate a major fault (type 4, code 20) if a subscript exceeds its corresponding dimension.

Bit Addressing

Bit addressing is used access a particular bit within a larger container. Larger containers include any integer, structure or BOOL array. For example:

Definition	Example	Description
VariableO	variable0.42	This example references the bit 42 of
defined as LINT		variableO.
has 64 bits		
variable1	variable1.2	This example references the bit 2 of
defined as DINT		variable1.
has 32 bits		
variable2	variable2.15	This example references the bit 15 of
defined as INT		variable2.
has 16 bits		
variable3	variable3.[4]	This example references bit 4 of
defined as SINT		variable3.
holds 8 bits		
variable4	variable4.DN	This example references the DN bit of
defined as COUNTER structure		variable4.
has 5 status bits		
MyVariable defined as BOOL[100]	MyVariable[(MyIndex AND NOT 7)/	This example references a bit within a
MyIndex defined as SINT	8].[MyIndex AND 7]	BOOL array.
MyArray defined as BOOL[20]	MyArray[3]	This example references the bit 3 of MyArray.

Definition	Example	Description
variable5	variable5.53	This example references the bit 53 of
defined as ULINT		variable5.
holds 64 bits		

Use Bit Addressing anywhere a BOOL typed tag is allowed.

Related information

Index through arrays on page 863

Major fault types and codes

Refer to the Logix 5000 Controller Fault Codes spreadsheet for a complete list of fault codes.

You might be asked to log in to your Rockwell Automation web account or create an account if you do not have one. You do not need a support contract to access the article.

Minor fault types and codes

Refer to the Logix 5000 Controller Fault Codes spreadsheet for a complete list of fault codes.

You might be asked to log in to your Rockwell Automation web account or create an account if you do not have one. You do not need a support contract to access the article.

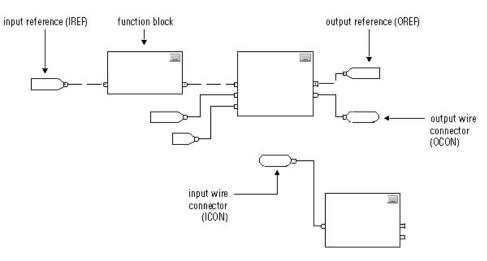
Function Block Attributes

Click a topic below for more information on issues that are unique to function block programming. Review this information to make sure you understand how your function block routines will operate.

Choose the Function Block Elements on page 867

Latching Data on page 868

Order of Execution on page 869


Function Block Responses to Overflow Conditions on page 872

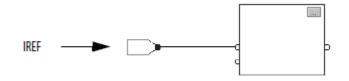
Timing Modes on page 873

Program/Operator Control on page 877

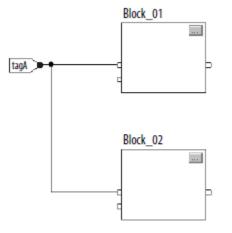
Choose the Function Block Elements

To control a device, use these elements:

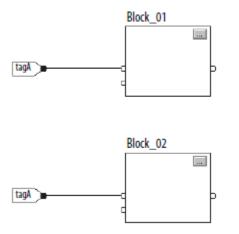
Use the following table to help you choose your function block elements:


If you want to supply a value from an input device or tag	Then use an input reference (IREF)	
Send a value to an output device or tag	Output reference (OREF)	
Perform an operation on an input value or values and produce an output value or values.	Function block	
 Transfer data between function blocks when they are: Far apart on the same sheet On different sheets within the same routine 	Output wire connector (OCON) and an input wire connector (ICON)	
Disperse data to several points in the routine	Single output wire connector (OCON) and multiple input wire connectors (ICON)	

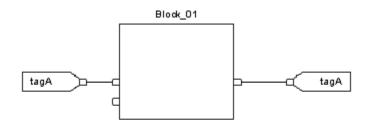
The function block moves the input references into the block structure. If necessary, the function block converts those input references to REAL values. The function block executes and moves the results into the output references.

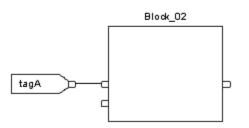

Again, if necessary, the function block converts those result values from REAL to the data types for the output references.

Latching Data


If you use an IREF to specify input data for a function block instruction, the data in that IREF is latched for the scan of the function block routine. The IREF latches data from program-scoped and controller-scoped tags. The controller updates all IREF data at the beginning of each scan.

In this example, the value of tagA is stored at the beginning of the routine's execution. The stored value is used when Block_01 executes. The same stored value is also used when Block_02 executes. If the value of tagA changes during execution of the routine, the stored value of tagA in the IREF does not change until the next execution of the routine.




This example is the same as the one above. The value of tagA is stored only once at the beginning of the routine's execution. The routine uses this stored value throughout the routine.

You can use the same tag in multiple IREFs and an OREF in the same routine. Because the values of tags in IREFs are latched every scan through the routine, all IREFs will use the same value, even if an OREF obtains a different tag value during execution of the routine.

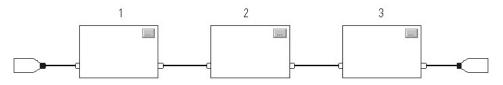
In this example, if tagA has a value of 25.4 when the routine starts executing this scan, and Block_01 changes the value of tagA to 50.9, the second IREF wired into Block_02 will still use a value of 25.4 when Block_02 executes this scan. The new tagA value of 50.9 will not be used by any IREFs in this routine until the start of the next scan.

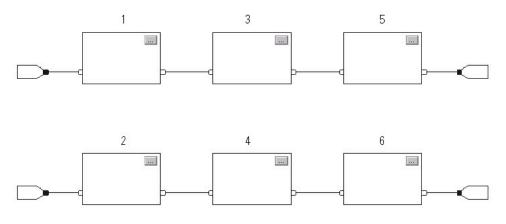
Order of Execution

The Logix Designer programming application automatically determines the order of execution for the function blocks in a routine when you:

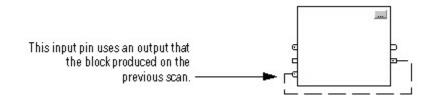
- verify a function block routine
- verify a project that contains a function block routine
- download a project that contains a function block routine

You define execution order by wiring function blocks together and indicating the data flow of any feedback wires, if necessary.

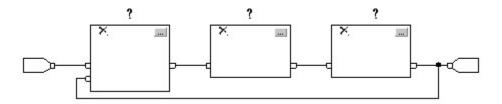

If function blocks are not wired together, it does not matter which block executes first. There is no data flow between the blocks



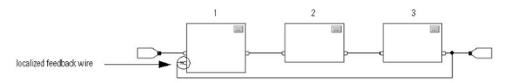
If you wire the blocks sequentially, the execution order moves from input to output. The inputs of a block require data to be available before the controller can execute that block. For example, block 2 has to execute before block 3 because the outputs of block 2 feed the inputs of block 3.



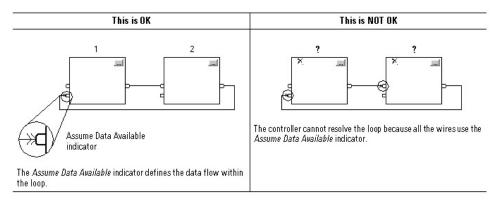
Execution order is only relative to the blocks that are wired together. The following example is fine because the two groups of blocks are not wired together. The blocks within a specific group execute in the appropriate order in relation to the blocks in that group.



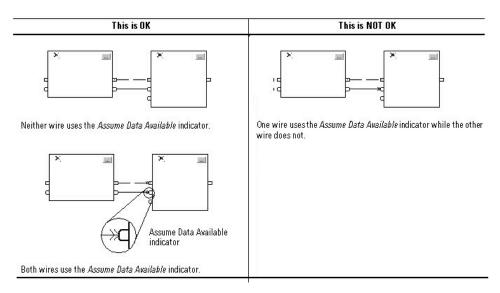
Resolve a Loop


To create a feedback loop around a block, wire an output pin of the block to an input pin of the same block. The following example is OK. The loop contains only a single block, so execution order does not matter.

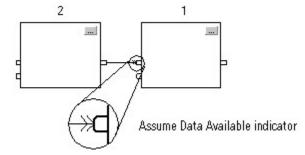
If a group of blocks are in a loop, the controller cannot determine which block to execute first. In other words, it cannot resolve the loop.



To identify which block to execute first, mark the input wire that creates the loop (the feedback wire) with the *Assume Data Available* indicator. In the following example, block 1 uses the output from block 3 that was produced in the previous execution of the routine.


The Assume Data Available indicator defines the data flow within the loop. The arrow indicates that the data serves as input to the first block in the loop.

Do not mark all the wires of a loop with the Assume Data Available indicator.


Resolve Data Flow Between Two Blocks

If you use two or more wires to connect two blocks, use the same data flow indicators for all of the wires between the two blocks.

Create a One Scan Delay

To produce a one scan delay between blocks, use the Assume Data Available indicator. In the following example, block 1 executes first. It uses the output from block 2 that was produced in the previous scan of the routine.

Summary

In summary, a function block routine executes in this order:

- 1. The controller latches all data values in IREFs.
- 2. The controller executes the other function blocks in the order determined by how they are wired.
- 3. The controller writes outputs in OREFs.

Function Block Responses to Overflow Conditions

In general, the function block instructions that maintain history do not update history with \pm NAN, or \pm INF values when an overflow occurs. Each instruction has one of these responses to an overflow condition.

Response	Instruction
Response 1	ALM NTCH
Blocks execute their algorithm and check the result for	DEDT PMUL
\pm NAN or \pm INF. If \pm NAN or \pm INF, the block outputs	DERV POSP
\pm NAN or \pm INF.	ESEL RLIM
	FGEN RMPS
	HPF SCRV
	LDL2 SEL
	LDLG SNEG
	LPF SRTP
	MAVE SSUM
	МАХС ТОТ
	MINC UPDN
	MSTD
	MUX
Response 2	HLL, INTG, PI, PIDE, SCL, SOC
Blocks with output limiting execute their algorithm and check	
the result for \pm NAN or \pm INF. The output limits are defined	
by the HighLimit and LowLimit input parameters. If \pm INF, the	
block outputs a limited result. If \pm NAN, the output limits are not	
used and the block outputs \pm NAN.	

Response 3

The overflow condition does not apply. These instructions

BAND, BNOT, BOR, BXOR, CUTD, D2SD, D3SD, DFF, JKFF, OSFI, OSRI, RESD, RTOR, SETD, TOFR, TONR

typically have a boolean output.

Timing Modes

These process control and drives instructions support different timing modes.

• DEDT	• LDLG	• RLIM
• DERV	• LPF	• SCRV
• HPF	• NTCH	• SOC
• INTG	• PI	• TOT
• LDL2	• PIDE	

There are three different timing modes.

Timing Mode	Description	Description	
Periodic	We recommend that you place the i	and is suitable for most control applications. instructions that use this mode in a routine that Ita time (DeltaT) for the instruction is determined	
	as follows:		
	If the instruction executes in a	Then DeltaT equals	
	Periodic task	Period of the task	
	Event or continuous task	Elapsed time since the previous execution	
		The controller truncates the elapsed	
		time to whole milliseconds (ms). For	
		example, if the elapsed time = 10.5 ms,	
		the controller sets DeltaT = 10 ms.	
	The update of the process input ne	The update of the process input needs to be synchronized with the execution of the	
	task or sampled 5-10 times faster t	task or sampled 5-10 times faster than the task executes in order to minimize the	
	sampling error between the input a	sampling error between the input and the instruction.	
Oversample	In oversample mode, the delta time	In oversample mode, the delta time (DeltaT) used by the instruction is the value	
	written into the OversampleDT para	written into the OversampleDT parameter of the instruction. If the process input has a	
	time stamp value, use the real time	time stamp value, use the real time sampling mode instead.	
	Add logic to your program to contro	Add logic to your program to control when the instruction executes. For example, you	
	can use a timer set to the Oversam	can use a timer set to the OversampleDeltaT value to control the execution by using	
	the EnableIn input of the instructio	the EnableIn input of the instruction.	
	The process input needs to be sam	The process input needs to be sampled 5-10 times faster than the instruction	
	is executed in order to minimize th	is executed in order to minimize the sampling error between the input and the	
	instruction.		
Real time sampling	In the real time sampling mode, the	e delta time (DeltaT) used by the instruction is the	
	difference between two time stamp	difference between two time stamp values that correspond to the updates of the	

process input. Use this mode when the process input has a time stamp associated
with its updates and you need precise coordination.
The time stamp value is read from the tag name entered for the RTSTimeStamp
parameter of the instruction. Normally this tag name is a parameter on the input
module associated with the process input.
The instruction compares the configured RTSTime value (expected update period)
against the calculated DeltaT to determine if every update of the process input is
being read by the instruction. If DeltaT is not within 1 millisecond of the configuration
time, the instruction sets the RTSMissed status bit to indicate that a problem exists
reading updates for the input on the module.

Time-based instructions require a constant value for DeltaT in order for the control algorithm to properly calculate the process output. If DeltaT varies, a discontinuity occurs in the process output. The severity of the discontinuity depends on the instruction and range over which DeltaT varies.

A discontinuity occurs if the following happens:

- Instruction is not executed during a scan.
- Instruction is executed multiple times during a task.
- Task is running and the task scan rate or the sample time of the process input changes.
- User changes the time-base mode while the task is running.
- Order parameter is changed on a filter block while the task is running.
- Changing the Order parameter selects a different control algorithm within the instruction.

Common Instruction Parameters for Timing Modes

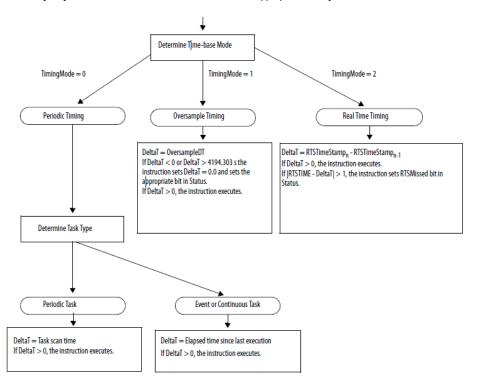
The instructions that support time-base modes have these input and output parameters.

Input Parameters

Input Parameter	Data Type	Description
TimingMode	DINT	Selects timing execution mode.
		Value: Description:
		0 Periodic mode
		1 Oversample mode
		2 Real time sampling mode
		Valid = 0 to 2
		Default = 0
		When TimingMode = 0 and task is
		periodic, periodic timing is enabled
		and DeltaT is set to the task scan rate.
		When TimingMode = 0 and task is
		event or continuous, periodic timing is
		enabled and DeltaT is set equal to the
		elapsed time span since the last time the
		instruction was executed.
		When TimingMode = 1, oversample timing
		is enabled and DeltaT is set to the value

	T	
		of the OversampleDT parameter. When
		TimingMode = 2, real time sampling
		timing is enabled and DeltaT is the
		difference between the current and
		previous time stamp values read from t
		module associated with the input.
		If TimingMode invalid, the instruction se
		the appropriate bit in Status.
OversampleDT	REAL	Execution time for oversample timing.
		The value used for DeltaT is in seconds.
		If TimingMode = 1, then OversampleDT =
		0.0 disables the execution of the contro
		algorithm. If invalid, the instruction set
		DeltaT = 0.0 and sets the appropriate b
		in Status.
		Valid = 0 to 4194.303 seconds
		Default = 0.0
TSTime	DINT	Module update period for real time
		sampling timing. The expected DeltaT
		update period is in milliseconds. The
		update period is normally the value tha
		was used to configure the module's
		update time. If invalid, the instruction
		sets the appropriate bit in Status and
		disables RTSMissed checking.
		Valid = 132,767ms
		Default = 1
RTSTimeStamp	DINT	Module time stamp value for real time
(io i mootamp		sampling timing. The time stamp value
		that corresponds to the last update
		of the input signal. This value is used
		to calculate DeltaT. If invalid, the
		instruction sets the appropriate bit in Status, disables execution of the contro
		algorithm, and disables RTSMissed
		checking.
		Valid =032,767ms (wraps from 32767 t
		0)
		1 count = 1 millisecond
		Default = 0

Output Parameters


Output Parameter	Data Type	Description
------------------	-----------	-------------

Chapter 23 Function Block Attributes

DeltaT	REAL	Elapsed time between updates. This is
		the elapsed time in seconds used by the
		control algorithm to calculate the process
		output.
		Periodic: DeltaT = task scan rate if task is
		Periodic task, DeltaT = elapsed time since
		previous instruction execution if task is
		Event or Continuous task
		Oversample: DeltaT = OversampleDT
		Real Time Sampling: DeltaT =
		(RTSTimeStampn - RTSTimeStampn-1)
Status	DINT	Status of the function block.
TimingModeInv (Status.27)	BOOL	Invalid TimingMode value.
RTSMissed (Status.28)	BOOL	Only used in real time sampling mode.
		Set when ABS DeltaT - RTSTime > 1(.001
		second).
RTSTimelnv (Status.29)	BOOL	Invalid RTSTime value.
RTSTimeStampInv (Status.30)	BOOL	Invalid RTSTimeStamp value.
DeltaTInv (Status.31)	BOOL	Invalid DeltaT value.

Overview of Timing Modes

The following diagram shows how an instruction determines the appropriate timing mode.

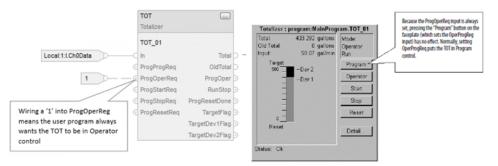
Program/Operator Control

The following instructions support the concept of Program/Operator control.

- Enhanced Select (ESEL)
- Totalizer (TOT)
- Enhanced PID (PIDE)
- Ramp/Soak (RMPS)
- Discrete 2-State Device (D2SD)
- Discrete 3-State Device (D3SD)

Program/Operator control lets you control these instructions simultaneously from both your user program and from an operator interface device. When in Program control, the instruction is controlled by the Program inputs to the instruction; when in Operator control, the instruction is controlled by the Operator inputs to the instruction.

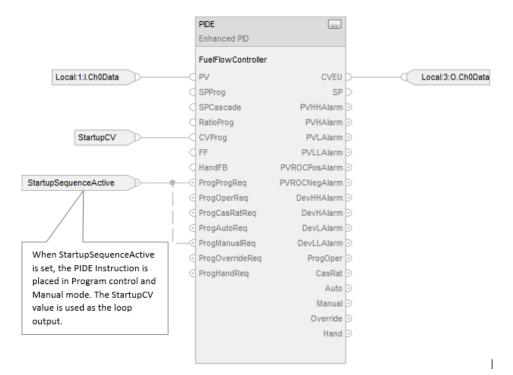
Program or Operator control is determined by using these inputs.


Input	Description
.ProgProgReq	A program request to go to Program control.
.ProgOperReq	A program request to go to Operator control.
.OperProgReq	An operator request to go to Program control.
.OperOperReq	An operator request to go to Operator control.

To determine whether an instruction is in Program or Operator control, examine the ProgOper output. If ProgOper is set, the instruction is in Program control; if ProgOper is cleared, the instruction is in Operator control.

Operator control takes precedence over Program control if both input request bits are set. For example, if ProgProgReq and ProgOperReq are both set, the instruction goes to Operator control.

The Program request inputs take precedence over the Operator request inputs. This provides the capability to use the ProgProgReq and ProgOperReq inputs to 'lock' an instruction in a desired control.


For example, let's assume that a Totalizer instruction will always be used in Operator control, and your user program will never control the running or stopping of the Totalizer. In this case, you could wire a literal value of 1 into the ProgOperReq. This would prevent the operator from ever putting the Totalizer into Program control by setting the OperProgReq from an operator interface device.

Likewise, constantly setting the ProgProgReq can 'lock' the instruction into Program control. This is useful for automatic startup sequences when you want the program to control the action of the instruction without worrying about an operator inadvertently taking control of the instruction.

In this example, you have the program set the ProgProgReq input during the startup, and then clear the ProgProgReq input once the startup was complete. Once the ProgProgReq input is cleared, the instruction remains in Program control until it receives a request to change. For example, the operator could set the OperOperReq input from a faceplate to take over control of that instruction.

The following example shows how to lock an instruction into Program control.

Operator request inputs to an instruction are always cleared by the instruction when it executes. This allows operator interfaces to work with these instructions by merely setting the desired mode request bit. You don't have to program the operator interface to reset the request bits. For example, if an operator interface sets the OperAutoReq input to a PIDE instruction, when the PIDE instruction executes, it determines what the appropriate response should be and clears the OperAutoReq.

Program request inputs are not normally cleared by the instruction because these are normally wired as inputs into the instruction. If the instruction clears these inputs, the input would just get set again by the wired input. There might be situations where you want to use other logic to set the Program requests in such a manner that you want the Program requests to be cleared by the instruction. In this case, you can set the ProgValueReset input and the instruction will always clear the Program mode request inputs when it executes.

In this example, a rung of ladder logic in another routine is used to one-shot latch a ProgAutoReq to a PIDE instruction when a push button is pushed.

When the TIC101AutoReq push button is pressed, one-shot latch ProgAutoReq for the PIDE instruction TIC101. TIC101 has been configured with the ProgValueReset input set. ProgAutoReq get reset because ProgValuieReset is always set.

	TIC101AutoReqPBOneShot	TIC101.ProgAutoReq
] []	[ONS]	(L)

Structured Text Programming

These are the issues that are unique with structured text programming. Review the following topics to make sure you understand how your structured text programming executes.

Structured Text Syntax on page 879

Structured Text Components: Comments on page 881

Structured Text Components: Assignments on page 881

Structured Text Components: Expressions on page 884

Structured Text Components: Instructions on page 889

Structured Text Components: Constructs on page 890

CASE_OF on page 892

FOR_DO on page 894

IF_THEN on page 897

REPEAT_UNTIL on page 899

WHILE_DO on page 902

Structured Text Syntax

Structured text is a textual programming language that uses statements to define what to execute.

- Structured text is not case sensitive.
- Use tabs and carriage returns (separate lines) to make your structured text easier to read. They have no effect on the execution of the structured text.

Structured text is not case sensitive. Structured text can contain these components.

Term	Definition	Examples
Assignment	Use an assignment statement to assign	tag := expression;
	values to tags. The := operator is the	
	assignment operator.	
	Terminate the assignment with a semi	
	colon ';.'	
Expression	An expression is part of a complete	
	assignment or construct statement.	
	An expression evaluates to a number	
	(numerical expression), a String (string	
	expression), or to a true or false state	
	(BOOL expression)	

Tag Expression	A named area of the memory where data is stored (BOOL, SINT, INT, DINT, REAL, String).	value1
Immediate Expression	A constant value	4
Operators Expression	A symbol or mnemonic that specifies an operation within an expression.	tag1 + tag2 tag1 >= value1
Function Expression	When executed, a function yields one value. Use parentheses to contain the operand of a function. Even though their syntax is similar, functions differ from instructions in that functions can be used only in expressions. Instructions cannot be used in expressions.	function(tag1)
Instruction	An instruction is a standalone statement. An instruction uses parentheses to contain its operands. Depending on the instruction, there can be zero, one, or multiple operands. When executed, an instruction yields one or more values that are part of a data structure. Terminate the instruction with a semi colon(;). Even though their syntax is similar, instructions differ from functions in that instructions cannot be used in expressions. Functions can be used only in expressions.	instruction(); instruction(operand); instruction(operand1, operand2,operand3);
Construct	A conditional statement used to trigger structured text code (that is, other statements). Terminate the construct with a semi colon (;).	IFTHEN CASE FORDO WHILEDO REPEATUNTIL EXIT
Comment	Text that explains or clarifies what a section of structured text does. Use comments to make it easier to interpret the structured text. Comments do not affect the execution of the structured text. Comments can appear anywhere in structured text.	//comment (*start of comment end of comment*) /*start of comment end of comment*

Structured Text Components: Comments

To make your structured text easier to interpret, add comments to it.

- Comments let you use plain language to describe how your structured text works.
- Comments do not affect the execution of the structured text.

To add comments to your structured text:

To add a comment	Use one of these formats
on a single line	//comment
at the end of a line of structured text	(*comment*)
	/*comment*/
within a line of structured text	(*comment*)
	/*comment*/
that spans more than one line	(*start of commentend of comment*)
	/*start of commentend of comment*/

For example:

Format	Example
//comment	At the beginning of a line
	//Check conveyor belt direction
	IF conveyor_direction THEN
	At the end of a line
	ELSE //If conveyor isn't moving, set alarm light
	light := 1;
	END_IF;
(*comment*)	Sugar.Inlet[:=]1;(*open the inlet*)
	IF Sugar.Low (*low level LS*)& Sugar.High (*high level
	LS*)THEN
	(*Controls the speed of the recirculation pump. The speed
	depends on the temperature in the tank.*)
	IF tank.temp > 200 THEN
/*comment*/	Sugar.Inlet:=0;/*close the inlet*/
	IF bar_code=65 /*A*/ THEN
	/*Gets the number of elements in the Inventory array and stores
	the value in the Inventory_Items tag*/
	SIZE(Inventory,0,Inventory_Items);

Structured Text Components: Assignments

Use an assignment to change the value stored within a tag. An assignment has this syntax:

tag := expression;

where:

Component	Description	Description	
Tag	Represents the tag that is getting the new	Represents the tag that is getting the new value; the tag must be a BOOL, SINT, INT,	
	DINT, STRING, or REAL.		
	Tip: The STRING tag is applicable to		
	CompactLogix 5380, CompactLogix 5480,	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix	
	5380, and GuardLogix 5580 controllers	5380, and GuardLogix 5580 controllers	
	only.		
:=	Is the assignment symbol		
Expression	Represents the new value to assign to the	tag	
	If tag is this data type	Use this type of expression	
	BOOL	BOOL	
	SINT	Numeric	
	INT		
	DINT		
	REAL		
	STRING	String type, including string tag and strin	
	(literal	
	CompactLogix 5380, CompactLogix 5480,	(
	ControlLogix 5580, Compact GuardLogix	CompactLogix 5380, CompactLogix 5480	
	5380, and GuardLogix 5580 controllers	ControlLogix 5580, Compact GuardLogix	
	only).	5380, and GuardLogix 5580 controllers	
		only).	
;	Ends the assignment	Ends the assignment	

The tag retains the assigned value until another assignment changes the value.

The expression can be simple, such as an immediate value or another tag name, or the expression can be complex and include several operators and functions, or both. Refer to Expressions for more information.

Tip: I/O module data updates asynchronously to the execution of logic. If you reference an input multiple times in your logic, the input could change state between separate references. If you need the input to have the same state for each reference, buffer the input value and reference that buffer tag. For more information, see Logix 5000 Controllers Common Procedures, publication 1756-PM001.

You can also use Input and Output program parameters which automatically buffer the data during the Logix Designer application execution. See LOGIX 5000 Controllers Program Parameters Programming Manual, publication 1756-PM021.

Specify a non-retentive assignment

The non-retentive assignment is different from the regular assignment described above in that the tag in a nonretentive assignment is reset to zero each time the controller:

- Enters the Run mode
- Leaves the step of an SFC if you configure the SFC for Automatic reset. This applies only if you embed the assignment in the action of the step or use the action to call a structured text routine by using a JSR instruction.

A non-retentive assignment has this syntax:

tag [:=] expression ;

where:

Component	Description		
tag	DINT, STRING, or REAL. Tip: The STRING tag is applicable to	Represents the tag that is getting the new value; the tag must be a BOOL, SINT, INT, DINT, STRING, or REAL. Tip: The STRING tag is applicable to CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix	
	only.		
[:=]	Is the non-retentive assignment symbol.	Is the non-retentive assignment symbol.	
expression	Represents the new value to assign to the	Represents the new value to assign to the tag.	
	If tag is this data type	Use this type of expression	
	BOOL	BOOL	
	SINT	Numeric	
	INT		
	DINT	-	
	REAL	-	
	STRING	String type, including string tag and string	
	(literal	
	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers only).	CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers (only)	

Assign an ASCII character to a string data member

Use the assignment operator to assign an ASCII character to an element of the DATA member of a string tag. To assign a character, specify the value of the character or specify the tag name, DATA member, and element of the character. For example:

This is OK

This is not OK

string1.DATA[0] := 65;	string1.DATA[0] := A;	
string1.DATA[0]:= string2.DATA[0];	string1 := string2;	
	Tip: This assigns all content of string2 to string1 instead of just	
	one character.	

To add or insert a string of characters to a string tag, use either of these ASCII string instructions:

То	Use this instruction
Add characters to the end of a string	CONCAT
Insert characters into a string	INSERT

Structured Text Components: Expressions

An expression is a tag name, equation, or comparison. To write an expression, use any of the following:

- Tag name that stores the value (variable)
- Number that you enter directly into the expression (immediate value)
- String literal that you enter directly into the expression (CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers

only)

- Functions, such as: ABS, TRUNC
- Operators, such as: +, -, <, >, And, Or

Follow these guidelines for writing expressions:

- Use any combination of upper-case and lower-case letter. For example, these variations of "AND" are acceptable: AND, And, and.
- For more complex requirements, use parentheses to group expressions within expressions. This makes the
 whole expression easier to read, and ensures that the expression executes in the desired sequence.

Use these expressions for structured text:

BOOL expression: An expression that produces the BOOL value of 1(true) or 0 (false).

- A bool expression uses bool tags, relational operators, and logical operators to compare values or check if conditions are true or false. For example, tag1>65.
- A simple bool expression can be a single BOOL tag.
- Typically, use bool expressions to condition the execution of other logic.

Numeric expression: An expression that calculates an integer or floating-point value.

- A numeric expression uses arithmetic operators, arithmetic functions, and bitwise operators. For example, taq1+5.
- Nest a numeric expression within a BOOL expression. For example, (tag1+5)>65.

String expression: An expression that represents a string

• A simple expression can be a string literal or a string tag

Use this table to select the operators for expressions.

lf	Use
Calculating an arithmetic value	Arithmetic operators and functions
Comparing two values or strings	Relational operators
Verifying if conditions are true or false	Logical operators
Comparing the bits within values	Bitwise operators

Use arithmetic operators and functions

Combine multiple operators and functions in arithmetic expressions.

Operators calculate new values.

То	Use this operator	Optimal data type
Add	+	DINT, REAL
Subtract/negate	-	DINT, REAL
Multiply	*	DINT, REAL
Exponent (x to the power of y)	**	DINT, REAL
Divide	1	DINT, REAL
Modulo-divide	MOD	DINT, REAL

Functions perform math operations. Specify a constant, a non-Boolean tag, or an expression for the function.

For	Use this function	Optimal data type
Absolute value	ABS (numeric_expression)	DINT, REAL
Arc cosine	ACOS (numeric_expression)	REAL
Arc sine	ASIN (numeric_expression)	REAL
Arc tangent	ATAN (numeric_expression)	REAL
Cosine	COS (numeric_expression)	REAL
Radians to degrees	DEG (numeric_expression)	DINT, REAL
Natural log	LN (numeric_expression)	REAL
Log base 10	LOG (numeric_expression)	REAL
Degrees to radians	RAD (numeric_expression)	DINT, REAL
Sine	SIN (numeric_expression)	REAL
Square root	SQRT (numeric_expression)	DINT, REAL
Tangent	TAN (numeric_expression)	REAL
Truncate	TRUNC (numeric_expression)	DINT, REAL

The table provides examples for using arithmetic operators and functions.

Use this format	Example	
	For this situation	Write
value1 operator value2	If gain_4 and gain_4_adj are DINT tags	gain_4_adj := gain_4+15;
	and your specification says:	

	'Add 15 to gain_4 and store the result in gain_4_adj‴	
operator value1	If alarm and high_alarm are DINT tags and your specification says: 'Negate high_alarm and store the result in alarm.'	alarm:= -high_alarm;
function(numeric_expression)	If overtravel and overtravel_POS are DINT tags and your specification says: 'Calculate the absolute value of overtravel and store the result in overtravel_POS.'	overtravel_POS := ABS(overtravel);
value1 operator (function((value2+value3)/2)	If adjustment and position are DINT tags and sensor1 and sensor2 are REAL tags and your specification says: 'Find the absolute value of the average of sensor1 and sensor2, add the adjustment, and store the result in position.'	position := adjustment + ABS((sensor1 + sensor2)/2);

Use bitwise operators

Bitwise operators manipulate the bits within a value based on two values.

The following provides an overview of the bitwise operators.

For	Use this operator	Optimal data type
bitwise AND	&, AND	DINT
bitwise OR	OR	DINT
bitwise exclusive OR	XOR	DINT
bitwise complement	NOT	DINT

This is an example.

Use this format	Example	
	For this situation	Use
value1 operator value2	If input1, input2, and result1 are DINT tags	result1 := input1 AND input2;
	and your specification says: "Calculate	
	the bitwise result of input1 and input2.	
	Store the result in result1."	

Use logical operators

Use logical operators to verify if multiple conditions are true or false. The result of a logical operation is a BOOL value.

If the comparison is	The result is
true	1
false	0

Use these logical operators.

For this comparison	Use this operator	Optimal data type
logical AND	&, AND	BOOL
logical OR	OR	BOOL
logical exclusive OR	XOR	BOOL
logical complement	NOT	BOOL

The table provides examples of using logical operators.

Use this format	Example	
	For this situation	Use
BOOLtag	If photoeye is a BOOL tag and your	IF photoeye THEN
	specification says: "If photoeye_1 is on	
	then"	
NOT BOOLtag	If photoeye is a BOOL tag and your	IF NOT photoeye THEN
	specification says: "If photoeye is off	
	then"	
expression1 & expression2	If photoeye is a BOOL tag, temp is a	IF photoeye & (temp<100) THEN
	DINT tag, and your specification says: "If	
	photoeye is on and temp is less than 100	
	then"	
expression1 OR expression2	If photoeye is a BOOL tag, temp is a	IF photoeye OR (temp<100) THEN
	DINT tag, and your specification says: "If	
	photoeye is on or temp is less than 100	
	then".	
expression1 XOR expression2	If photoeye1 and photoeye2 are BOOL tags	IF photoeye1 XOR photoeye2 THEN
	and your specification says: "If:	
	photoeye1 is on while photoeye2 is off or	
	photoeye1 is off while photoeye2 is on	
	then"	
BOOLtag := expression1 & expression2	If photoeye1 and photoeye2 are BOOL	open := photoeye1 & photoeye2;
	tags, open is a BOOL tag, and your	
	specification says: "If photoeye1 and	
	photoeye2 are both on, set open to true"	

Use relational operators

Relational operators compare two values or strings to provide a true or false result. The result of a relational operation is a BOOL value.

If the comparison is	The result is
True	1
False	0

Use these relational operators.

For this comparison	Use this operator	Optimal data type
Equal	=	DINT, REAL, String type
Less than	<	DINT, REAL, String type
Less than or equal	<-	DINT, REAL, String type
Greater than	>	DINT, REAL, String type
Greater than or equal	>=	DINT, REAL, String type
Not equal	<	DINT, REAL, String type

The table provides examples of using relational operators

Use this format	Example	
	For this situation	Write
value1 operator value2	If temp is a DINT tag and your specification says: 'If temp is less than 100· then'	IF temp<100 THEN
stringtag1 operator stringtag2	If bar_code and dest are string tags and your specification says: 'If bar_code equals dest then'	IF bar_code=dest THEN
stringtag1 operator 'character string literal'	If bar_code is a string tag and your specification says: 'If bar_code equals 'Test PASSED' then'	IF bar_code='Test PASSED' THEN
charl operator char2 To enter an ASCII character directly into the expression, enter the decimal value of the character.	If bar_code is a string tag and your specification says: 'If bar_code.DATA[0] equals 'A' then'	IF bar_code.DATA[0]=65 THEN
bool_tag := bool_expressions	If count and length are DINT tags, done is a BOOL tag, and your specification says: 'If count is greater than or equal to length, you are done counting.'	Done := (count >= length);

How strings are evaluated

The hexadecimal values of the ASCII characters determine if one string is less than or greater than another string.

• When the two strings are sorted as in a telephone directory, the order of the strings determines which one is greater.

		ASCII Characters	Hex Codes	
	10	1ab	\$31\$61\$62	
i ≜	g	1b	\$31\$62	
	r	A	\$41	
;	e a	AB	\$41\$42	AB ∝
	t e	В	\$42	1
6	ř	a	\$61	— a>l
		ab	\$61\$62	

- Strings are equal if their characters match.
- Characters are case sensitive. Upper case "A" (\$41) is not equal to lower case "a" (\$61).

Structured Text Components: Instructions

Structured text statements can also be instructions. A structured text instruction executes each time it is scanned. A structured text instruction within a construct executes every time the conditions of the construct are true. If the conditions of the construct are false, the statements within the construct are not scanned. There is no rungcondition or state transition that triggers execution.

This differs from function block instructions that use EnableIn to trigger execution. Structured text instructions execute as if EnableIn is always set.

This also differs from ladder diagram instructions that use rung-condition-in to trigger execution. Some ladder diagram instructions only execute when rung- condition-in toggles from false to true. These are transitional ladder diagram instructions. In structured text, instructions execute when they are scanned unless pre-conditioning the execution of the structured text instruction.

For example, the ABL instruction is a transitional instruction in ladder diagram. In this example, the ABL instruction only executes on a scan when tag_xic transitions from cleared to set. The ABL instruction does not execute when tag_xic stays set or when tag_xic clears.

tag_xic] [ABL
	Character Count 0

In structured text, if writting this example as:

IF tag_xic THEN ABL(0,serial_control);

END_IF;

The ABL instruction will execute every scan that tag_xic is set, not just when tag_xic transitions from cleared to set.

If you want the ABL instruction to execute only when tag_xic transitions from cleared to set, you have to condition the structured text instruction. Use a one-shot to trigger execution.

osri_1.InputBit := tag_xic;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

ABL(0,serial_control);

END_IF;

Structured Text Components: Constructs

Program constructs alone or nest within other constructs.

lf	Use this construct
Doing something if or when specific conditions occur	IFTHEN
Selecting what to do based on a numerical value	CASE 0F
Doing something a specific number of times before doing	FORDO
anything else	
Continuing doing something when certain conditions are true	WHILEDO
Continuing doing something until a condition is true	REPEAT UNTIL

Some Key Words are Reserved

These constructs are not available:

- GOTO
- REPEAT

Logix Designer application will not let you use them as tag names or constructs.

Character string literals

Character string literals include single byte or double byte encoded characters. A single-byte string literal is a sequence of zero or more characters that are prefixed and terminated by the single quote character ('). In single byte character strings, the three-character combination of the dollar sign (\$) followed by two hexadecimal digits is interpreted as the hexadecimal representation of the eight-bit character code as shown in the following table.

Tip: Character string literals are only applicable to

the CompactLogix 5380, CompactLogix 5480, ControlLogix 5580, Compact GuardLogix 5380, and GuardLogix 5580 controllers. Studio 5000 only supports single byte characters.

Character string literals

No.	Description	Example
la	Empty string (length zero)	n

16	String of length one or character CHAR containing a single character	Ά'
1c	String of length one or character CHAR containing the "space" character	
1d	String of length one or character CHAR containing the "single quote" character	κζη.
1e	String of length one or character CHAR containing the "double quote" character	80
1f	Support of two character combinations	'\$R\$L'
1g	Support of a character representation with '\$' and two hexadecimal characters	'\$0A'

Two-character combinations in character strings

No.	Description	Example
1	Dollar sign	\$\$
2	Single quote	\$'
3	Line feed	\$L or \$I
4	Newline	\$N or \$n
5	Form feed (page)	\$P or \$p
6	Carriage return	\$R or \$r
7	Tabulator	\$T or \$t

Tip: The newline character provides an implementation-independent means of defining the end of a line of data for both physical and file I/O; for printing, the effect is that of ending a line of data and resuming printing at the beginning of the next line.

The \$' combination is only valid inside single quoted string literals.

Integer literal suffixes

This table lists suffixes you can add to integer literals in Structured Text, and the corresponding range for each suffix.

Suffix	Literal data type	Range
None	DINT	-2,147,483,648 to 2,147,483,648
L	LINT	-9,223,372,036,854,775,808
		to 9,223,372,036,854,775,808
U	UDINT	0 to 4,294,967,295
UL	ULINT	0 to 18,446,744,073,709,551,615

String Types

Store ASCII characters in tags that use a string type data type to:

- Use the default STRING data type, which stores up to 82 characters
- Create a new string type that stores less or more characters

To create a new string type, refer to the Logix 5000 Controllers ASCII Strings Programming Manual publication 1756-PM013.

Each string type contains the following members:

Name	Data Type	Description	Notes
LEN	DINT	number of characters in the string	The LEN automatically updates to the new count of characters whenever using: • The String Browser to enter characters • Instructions that read, convert, or manipulate a string The LEN shows the length of the current string. The DATA member may contain additional, old characters, which are not included in the LEN count.
DATA	SINT array	ASCII characters of the string	To access the characters of the string, address the name of the tag. For example, to access the characters of the string_1 tag, enter string_1. Each element of the DATA array contains one character. Create new string types that store less or more characters.

CASE_OF

Use CASE_OF to select what to do based on a numerical value.

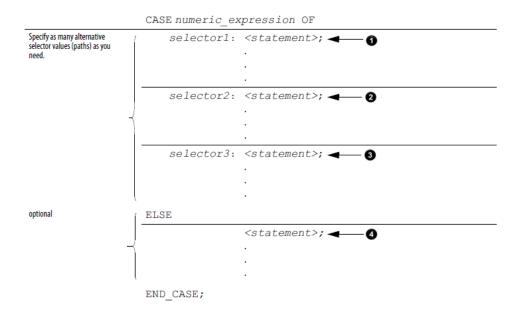
Operands

CASE numeric_expression OF

selector1: statement;

selectorN: statement; ELSE

Structured Text


Operand	Туре	Format	Enter
Numeric_ expression	SINT INT DINT REAL	Tag expression	Tag or expression that evaluates to a number (numeric expression)
Selector	SINT INT DINT REAL	Immediate	Same type as numeric_expression

IMPORTANT: If using REAL values, use a range of values for a selector because a REAL value is more

likely to be within a range of values than an exact match of one, specific value.

Description

The syntax is described in the table.

These are the syntax for entering the selector values.

When selector is	Enter
One value	value: statement
Multiple, distinct values	value1, value2, valueN : <statement> Use a comma (,) to separate each value.</statement>
A range of values	value1valueN : <statement> Use two periods () to identify the range.</statement>
Distinct values plus a range of values	valuea, valueb, value1valueN : <statement></statement>

The CASE construct is similar to a switch statement in the C or C++ programming languages. With the CASE construct, the controller executes only the statements that associated with the first matching selector value. Execution always breaks after the statements of that selector and goes to the END_CASE statement.

Affects Math Status Flags

No

Major/Minor Faults

None

Example

	Factor this stand to the
If you want this	Enter this structured text
If recipe number = 1 then Ingredient A outlet 1 = open (1)	CASE recipe_number OF
Ingredient B outlet 4 = open (1)	1:
	Ingredient_A.Outlet_1 :=1; Ingredient_B.Outlet_4 :=1;
If recipe number = 2 or 3 then	2,3:
Ingredient A outlet 4 = open (1)	Ingredient_A.Outlet_4 :=1; Ingredient_B.Outlet_2 :=1;
Ingredient B outlet 2 = open (1)	
If recipe number = 4, 5, 6, or 7 then Ingredient A outlet 4 = open	47: Ingredient_A.Outlet_4 :=1; Ingredient_B.Outlet_2 :=1;
(1) Ingredient B outlet 2 = open (1)	
If recipe number = 8, 11, 12, or 13 then Ingredient A outlet 1 =	8,1113
open (1) Ingredient B outlet 4 = open (1)	Ingredient_A.Outlet_1 :=1; Ingredient_B.Outlet_4 :=1;
Otherwise all outlets = closed (0)	ELSE
	Ingredient_A.Outlet_1[:=]0; Ingredient_A.Outlet_4[:=]0;
	Ingredient_B.Outlet_2 [:=]0; Ingredient_B.Outlet_4 [:=]0;
	END_CASE;

The [:=] tells the controller to also clear the outlet tags whenever the controller does the following:

Enters the RUN mode.

Leaves the step of an SFC if configuring the SFC for Automatic reset. This applies only embedding the assignment in the action of the step or using the action to call a structured text routine via a JSR instruction.

FOR_DO

Use the FOR_DO loop to perform an action a number of times before doing anything else.

When enabled, the FOR instruction repeatedly executes the Routine until the Index value exceeds the Terminal value. The step value can be positive or negative. If it is negative, the loop ends when the index is less than the terminal value. If it is positive, the loop ends when the index is greater than the terminal value.

Each time the FOR instruction executes the routine, it adds the Step size to the Index.

Do not loop too many times in a single scan. An excessive number of repetitions causes the controller watchdog to timeout and causes a major fault.

Operands

FOR count:= initial_value TO

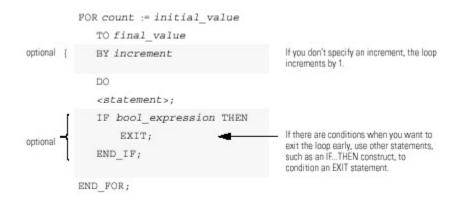
final_value BY increment DO

<statement>;

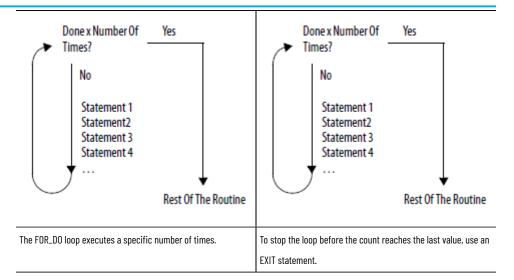
END_FOR;

Operand	Туре	Format	Description
count	SINT INT DINT	Tag	Tag to store count position as the FOR_DO executes
initial_ value	SINT INT DINT	Tag expression Immediate	Must evaluate to a number Specifies initial value for count
final_ value	SINT INT DINT	Tag expression Immediate	Specifies final value for count, which determines when to exit the loop
increment	SINT INT DINT	Tag expression Immediate	(Optional) amount to increment count each time through the loop If you don't specify an increment, the count increments by 1.

IMPORTANT: Do not iterate within the loop too many times in a single scan.


The controller does not execute other statements in the routine until it completes the loop.

A major fault occurs when completing the loop takes longer than the watchdog timer for the task.


Consider using a different construct, such as IF_THEN.

Description

The syntax is described in the table.

This diagrams illustrates how a FOR_DO loop executes, and how an EXIT statement leaves the loop early.

Affects Math Status Flags

No

Major/Minor Faults

A major fault will occur if	Fault type	Fault code
The construct loops too long.	6	1

Example 1

If performing the following,	Enter this structured text
Clear bits 031 in an array of BOOLs:	For subscript:=0 to 31 by 1 do
Initialize the subscript tag to 0.	array[subscript] := 0;
Clear i . For example, when subscript = 5, clear array[5]. Add 1 to subscript.	End_for:
If subscript is \leq to 31, repeat 2 and 3.	
Otherwise, stop.	

Example 2

If performing the following,	Enter this structured text
A user-defined data type (structure) stores the following	SIZE(Inventory,0,Inventory_Items);
information about an item in your inventory:	For position:=0 to Inventory_Items - 1 do
• Barcode ID of the item (String data type)	If Barcode = Inventory[position].ID then
• Quantity in stock of the item (DINT data type)	Quantity := Inventory[position].0ty;
An array of the above structure contains an element for each	
different item in your inventory. You want to search the array	Exit;
for a specific product (use its bar code) and determine the	End_if;
quantity that is in stock.	End_for;
1. Get the size (number of items) of the Inventory array and	
store the result in	
2. Inventory_Items (DINT tag).	

_		
Init	ialize the position tag to 0.	
1.	If Barcode matches the ID of an item in the array, then:	
Set	the Quantity tag = Inventory[position].Qty. This produces the	
qua	antity in stock of the item.	
Sto	Stop.	
Bar	Barcode is a string tag that stores the bar code of the item for	
whi	ich you are searching. For example, when	
pos	sition = 5, compare Barcode to Inventory[5].ID.	
1.	Add 1 to position.	
2.	If position is \leq to (Inventory_Items -1), repeat 3 and 4.	
	Since element numbers start at 0, the last element is 1 less	
	than the number of elements in the array.	
Oth	erwise, stop.	

IF_THEN

Use IF_THEN to complete an action when specific conditions occur.

Operands

IF bool_expression THEN

<statement>;

Operand	Туре	Format	Enter
Bool_	BOOL	Tag expression	BOOL tag or expression that
expression			evaluates to a BOOL value
			(BOOL expression)

Description

The syntax is described in the table.

To use ELSIF or ELSE, follow these guidelines.

To select from several possible groups of statements, add one or more ELSIF statements.

Each ELSIF represents an alternative path.

Specify as many ELSIF paths as you need.

The controller executes the first true IF or ELSIF and skips the rest of the ELSIFs and the ELSE.

To do something when all of the IF or ELSIF conditions are false, add an ELSE statement.

The table summarizes different combinations of IF, THEN, ELSIF, and ELSE.

lf	And	Use this construct
Doing something if or when conditions	Do nothing if conditions are false	IF_THEN
are true	Do something else if conditions are false	IF_THEN_ELSE
Selecting alternative statements or	Do nothing if conditions are false	IF_THEN_ELSIF
groups of statements based on input	Assign default statements if all conditions	IF_THEN_ELSIF_ELSE
conditions	are false	

Affects Math Status Flags

No

Major/Minor Faults

None.

Examples

Example 1

IF...THEN

If performing this	Enter this structured text
IF rejects > 3 then	IF rejects > 3 THEN
conveyor = off (0)	conveyor := 0;
alarm = on (1)	alarm := 1;
	END_IF;

Example 2

IF_THEN_ELSE

If performiing this	Enter this structured text
If conveyor direction contact = forward (1) then	IF conveyor_direction THEN
light = off	light := 0;
Otherwise light = on	ELSE

	light [:=] 1;
_	END_IF;

The [:=] tells the controller to clear light whenever the controller does the following :

Enters the RUN mode.

Leaves the step of an SFC if you configure the SFC for Automatic reset. (This applies only if you embed the assignment in the action of the step or use the action to call a structured text routine via a JSR instruction.)

Example 3

IF...THEN...ELSIF

If performing this	Enter this structured text
If sugar low limit switch = low (on) and sugar high limit switch =	IF Sugar.Low & Sugar.High THEN
not high	
(on) then	
inlet valve = open (on)	Sugar.Inlet [:=] 1;
Until sugar high limit switch = high (off)	ELSIF NOT(Sugar.High) THEN
	Sugar.Inlet := 0;
	END_IF;

The [:=] tells the controller to clear Sugar.Inlet whenever the controller does the following :

Enters the RUN mode.

Leaves the step of an SFC if you configure the SFC for Automatic reset. (This applies only if you embed the assignment in the action of the step or use the action to call a structured text routine via a JSR instruction.)

Example 4

IF...THEN...ELSIF...ELSE

If performing this	Enter this structured text
If tank temperature > 100	IF tank.temp > 200 THEN
then pump = slow	pump.fast :=1; pump.slow :=0; pump.off :=0;
If tank temperature > 200	ELSIF tank.temp > 100 THEN
then pump = fast	pump.fast :=0; pump.slow :=1; pump.off :=0;
Otherwise pump = off	ELSE
	pump.fast :=0; pump.slow :=0; pump.off :=1;
	END_IF;

REPEAT_UNTIL

Use the REPEAT_UNTIL loop to continue performing an action until conditions are true.

Operands

REPEAT

<statement>;

Structured Text

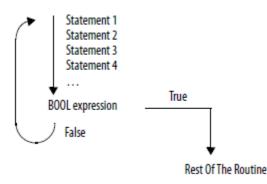
Operand	Туре	Format	Enter
bool_	BOOL	Tag expression	BOOL tag or expression that
expression			evaluates to a BOOL value
			(BOOL expression)

IMPORTANT: Do not iterate within the loop too many times in a single scan.

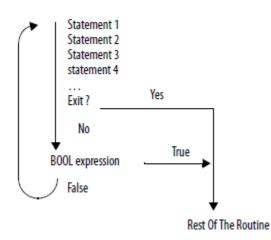
The controller does not execute other statements in the routine until it completes the loop.

A major fault occurs when completing the loop takes longer than the watchdog timer for the task.

Consider using a different construct, such as IF_THEN.


Description

The syntax is:



The following diagrams show how a REPEAT_UNTIL loop executes and how an EXIT statement leaves the loop early.

While the bool_expression is false, the controller executes only the statements within the REPEAT_UNTIL loop.

To stop the loop before the conditions are false, use an EXIT statement.

Affects Math Status Flags

No

Fault Conditions

A major fault will occur if	Fault type	Fault code
The construct loops too long	6	1

Example 1

If performing the following,	Enter this structured text
The REPEAT_UNTIL loop executes the statements in the	pos := -1;
construct and then determines if the conditions are true before	REPEAT
executing the statements again. This differs from the ${\tt WHILE_DO}$	pos := pos + 2;
loop because the WHILE_DO The WHILE_DO loop evaluates its	
conditions first.	UNTIL ((pos = 101) OR (structarray[pos].value = targetvalue))
If the conditions are true, the controller then executes the	end_repeat;
statements within the loop. The statements in a $\ensuremath{REPEAT_UNTIL}$	
loop are always executed at least once. The statements in a	
WHILE_DO loop might never be executed.	

Example 2

If performing the following,	Enter this structured text
Move ASCII characters from a SINT array into a string tag. (In a	element_number := 0;
SINT array, each element holds one character.) Stop when you	SIZE(SINT_array, O, SINT_array_size);
reach the carriage return.	Repeat
Initialize Element_number to 0. Count the number of elements in SINT_array (array that	
	, ,
contains the ASCII characters) and store the result in	SINT_array[element_number];
SINT_array_size (DINT tag).	element_number := element_number + 1;
Set String_tag[element_number] = the character at	String_tag.LEN := element_number;
SINT_array[element_number].	If element_number = SINT_array_size then

Add 1 to element_number. This lets the controller check the next	exit;
character in	end_if;
SINT_array.	Until SINT_array[element_number] = 13
Set the Length member of String_tag = element_number. (This	end_repeat;
records the number of characters in String_tag so far.)	
If element_number = SINT_array_size, then stop. (You are at the	
end of the array and it does not contain a carriage return.)	
If the character at SINT_array[element_number] = 13 (decimal	
value of the carriage return), then stop.	

WHILE_DO

Use the WHILE_DO loop to continue performing an action while certain conditions are true.

Operands

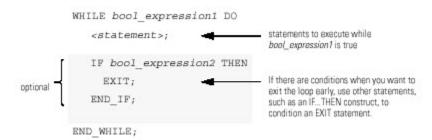
WHILE bool_expression DO

<statement>;

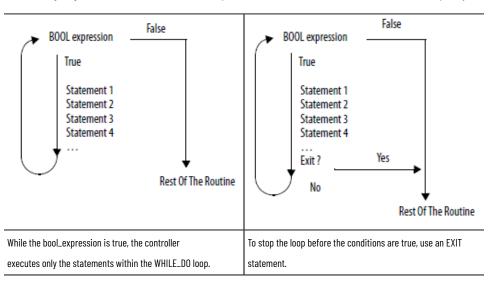
Structured Text

Operand	Туре	Format	Description
bool_expression	BOOL	tag	BOOL tag or expression that
		expression	evaluates to a BOOL value

IMPORTANT: Do not iterate within the loop too many times in a single scan.


The controller does not execute any other statements in the routine until it completes the loop.

A major fault occurs when completing the loop takes longer than the watchdog timer for the task.


Consider using a different construct, such as IF_THEN.

Description

The syntax is:

The following diagrams illustrate how a WHILE_DO loop executes, and how an EXIT statement leaves the loop early.

Affects Math Status Flags

No

Fault Conditions

A major fault will occur if	Fault type	Fault code
the construct loops too long	6	1

Example 1

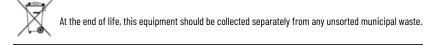
If performing the following,	Enter this structured text	
The WHILE_DO loop evaluates its	pos := 0;	
conditions first. If the conditions are	While ((pos <= 100) & structarray[pos].value <> targetvalue)) do	
true, the controller then executes the	pos := pos + 2;	
statements within the loop.		
This differs from the REPEAT_UNTIL loop		String_tag.DATA[pos] := SINT_array[pos];
because the REPEAT_UNTIL loop executes	end_while;	
the statements in the construct and then		
determines if the conditions are true		
before executing the statements again.		
The statements in a REPEAT_UNTIL loop		
are always executed at least once. The		
statements in a WHILE_DO loop might		
never be executed.		

Example 2

If performing the following,	Enter this structured text
------------------------------	----------------------------

Move ASCII characters from a SINT array into a string tag. (In a	element_number := 0;
SINT array, each element holds one character.) Stop when you	SIZE(SINT_array, O, SINT_array_size);
reach the carriage return.	While SINT_array[element_number] <> 13 do
Initialize Element_number to 0.	
Count the number of elements in SINT_array (array that	
contains the ASCII characters) and store the result in	SINT_array[element_number];
SINT_array_size (DINT tag).	element_number := element_number + 1;
If the character at SINT_array[element_number] = 13 (decimal	String_tag.LEN := element_number;
value of the carriage return), then stop.	If element_number = SINT_array_size then
Set String_tag[element_number] = the character at	exit;
SINT_array[element_number].	end_if;
Add 1 to element_number. This lets the controller check the next	end_while;
character in SINT_array.	
Set the Length member of String_tag = element_number. (This	
records the number of characters in String_tag so far.)	
If element_number = SINT_array_size, then stop. (You are at the	
end of the array and it does not contain a carriage return.)	

Rockwell Automation Support


Use these resources to access support information.

Technical Support Center	Find help with how-to videos, FAQs, chat, user forums, and product notification updates.	rok.auto/support
Knowledgebase	Access Knowledgebase articles.	rok.auto/knowledgebase
Local Technical Support Phone Numbers	Locate the telephone number for your country.	rok.auto/phonesupport
Literature Library	Find installation instructions, manuals, brochures, and technical data publications.	rok.auto/literature
Product Compatibility and Download Center	Get help determining how products interact, check features and capabilities, and find	rok.auto/pcdc
(PCDC)	associated firmware.	

Documentation feedback

Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form at rok.auto/docfeedback.

Waste Electrical and Electronic Equipment (WEEE)

Rockwell Automation maintains current product environmental information on its website at rok.auto/pec.

Rockwell Otomasyon Ticaret A.Ş. Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400 EEE Yönetmeliğine Uygundur

Connect with us. 🗗 🞯 in 😏

rockwellautomation.com ·

- expanding human possibility^{**}

AMERICAS: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 EUROPE/MIDDLE EAST/AFRICA: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 ASIA PACIFIC: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846