

Technical news

Please circulate to
\qquad

When this point is reached the contact resistance will increase and cause severe overheating. If the switch is not removed from service the overheating will cause failure to adjacent parts of the switch and an open circuit or a short circuit between phases or poles will occur.

The end of electrical life for a switch') can be quite different. Some will fail to carry current, others will overheat and the most dramatic of them will go out in a blaze of sparks. Fortunately most applications of switches result in an electrical life far greater than the application requires.
When a switch does meet an untimely end it is time to reflect on why it occurred.

Was it caused by an unduly harsh life or was it the result of an oversight by its maker?

Mode of failure

Under normal operating conditions a switch will reach its electrical life when the contact material has been eroded to the point where the base contact material is exposed.

- Mode of failure
- Performance testing
- Utilisation categories and test conditions

CATEGORIES
 UTILISATION

 leading supplier of low-voltage motor control and switchgear.

[^0]Under normal operating conditions a switch will reach its electrical life when the contact material has been eroded to the point where the base contact material is exposed.

Utilisation Categories
(continued from page 1)

Performance testing

To simulate service conditions the electrical standards have devised different test levels for different switching applications. Different types of loads place greatly varying stresses on the switch. With some loads the initial inrush current can be high but the switch would not normally be required to break this current.
The power factor of the load greatly influences the arc duration at switch off. With a resistive circuit the power factor is unity and this produces the most favourable conditions for the switch to interrupt the current as there is no energy stored in the load. As the inductance increases and the power factor drops, the stored energy increases and this energy causes the arc voltage to rise as the switch tries to interrupt the current. This results in longer arcing times and greater contact erosion.
In Table 1 the test conditions for common utilisation categories are listed.

Test "A" represents the overload condition created at turn on. It is the breaking of this current that causes the major stress on the switch. As the inrush only lasts for a short time it is unusual for the switch to interrupt this current. The number of operations for the test is therefore very low.

Test " B " is the conventional operational performance test and represents in some categories a current higher than the switch would normally interrupt but it is only for a limited number of operations.
Test "C" defines the test conditions for verifying the electrical life of a switch. For AC 3 the test conditions are dramatically different to test "B", the conventional test. When switching off a motor during running the voltage across the switch is reduced by the back Electro Motive Force (EMF) of the motor. To allow for this the voltage for the test is only 0.17 times the rated voltage.

Normal service

To achieve in service the same electrical life as its rated life a switch must have circuit conditions no more arduous than the test conditions used to determine the rating.

With motor loads even only occasional switching off at less than full speed will greatly reduce contact life. While AC 4 ratings do provide for this type of duty it is normal that the AC 4 electrical life is less than the typical AC 3 life.
It is common for AC 4 applications such as inching of motors to be under manual control and the total number of operations would not normally be very high. Fig. 1 represents the typical electrical life of a 100 amp rated contactor. It can be seen that the life is greatly influenced by the current interrupted. If the current is doubled the life is reduced by approximately a factor of four. It can be seen therefore, that if a contactor is required to interrupt the locked rotor current (typically 6 times the full load current) of a motor the contact life will be reduced dramatically.

Fig. 1

Utilisation categories and test conditions
Common AC categories

Notes: Tests $\mathrm{A}=$ Making and breaking capacity. $\mathrm{B}=$ Conventional operational performance. $C=$ Verification of the number of on-load cperating cycles. Some test values depend on the value of le and the values listed are indicative.

I = Current made
Ic = Current broken
$\mathrm{le}=$ Rated operational current Ur = Recovery voltage
$\mathrm{Ue}=$ Rated operational voltage $\cos \varnothing=$ Power factor to test circuit

Utilisation Categories
(continued from page 2)

Selection

It is essential for applications which will subject any switch to high operational requirements that consideration is given to either selecting a larger device or introducing a maintenance programme that replaces the device before it fails. It must be remembered that the actual failure mode is not tested by the standards. The device is expected to still be operational at the end of any testing for contact performance. If the switch is left in service until it fails because contact life has been exceeded the failure can be quite dramatic and may cause damage to other components.
For further information refer to Sprecher + Schuh publication 2200T.

Typical electromagnet

I_{s} Steady state current
$I_{s l}$ Closing current
T_{I} Turn on
T_{2} Magnet closed

NHP Electrical

Engineering Products
Pty Ltd A.C.N. 004304812
Internet http://www.nhp.com.au

MELBOURNE

43-67 River Street,
Richmond, Vic. 3121
Phone: (03) 94292999
Fax (03) 94291075
SYDNEY
30-34 Day Street North,
Silverwater, N.S.W. 2128
Phone: (02) 97483444
Fax: (02) 96484353
BRISBANE
25 Turbo Drive, Coorparoo, Qld. 4151
Phone: (07) 38916008
Fax: (07) 38916139
ADELAIDE
50 Croydon Road,
Keswick, S.A. 5035
Phone: (08) 82979055
Fax: (08) 83710962
PERTH
38 Belmont Ave.,
Rivervale, W.A. 6103
Phone: (08) 92771777
Fax: (08) 92771700
NEWCASTLE
575 Maitland Road, Mayfield West, N.S.W. 2304
Phone: (02) 49602220
Fax: (02) 49602203
TOWNSVILLE
62 Leyland Street,
Garbutt, QId. 4814
Phone: (07) 47790700
Fax: (07) 47751457
ROCKHAMPTON
208 Denison Street, Rockhampton, Qld. 4700
Phone: (07) 49272277
Fax: (07) 49222947
TOOWOOMBA
Cnr Carroll St. \& Struan Crt.,
Toowoomba, Qld. 4350
Phone: (07) 46344799
Fax: (07) 46331796
CAIRNS
14/128 Lyons Street,
Bungalow, Qld. 4870
Phone: (07) 40356888
Fax: (07) 40356999
DARWIN
3 Steele Street,
Winnellie, $N . T .0820$
Phone: (08) 89472666
Fax: (08) 89472049
Agents:
HOBART
199 Harrington Street,
Hobart, Tas. 7000
Phone: (03) 62349299
Fax: (03) 62311693
LAUNCESTON
59 Garfield Street,
Launceston, Tas. 7250
Phone: (03) 63448811
Fax: (03) 63444069
BURNIE
6 Wellington Street,
Burnie, Tas. 7320
Phone: (03) 64322588
Fax: (03) 64322580

[^0]: Star delta starter failure to reach near
 full speed before changing to delta
 connection greatly reduces life of
 star contactor. Star delta starter failure to reach near
 full speed before changing to delfa
 connection greatly reduces life of
 star contactor. Star delta starter failure to reach near
 full speed before changing to delta
 connection greatly reduces life of
 star contactor. Star delta starter failure to reach near
 full speed before changing to delta
 connection greatly reduces life of
 star contactor.

