

Issue 7
Please circulate to
\qquad

Quarterly Newsletter of Australia's leading supplier of low-voltage motor control and switchgear.

- Guide to fault levels
- The point of supply
- Reducing factors 2
- Typical installation
- Short circuit calculations

QUICK GUIDE TO FAULT LEVELS

The Wiring Rules require that protective devices shall be capable of interrupting any overcurrent up to and including the prospective short circuit current at the point where the protective devices are installed. To provide equipment with lower ratings can create a
danger but to provide ratings much higher than that required can be a waste of money. The calculation method described in this publication is intended to provide a quick and simple means of determining the approximate fault level.

The point of supply

At the point of supply two fault levels can exist. The first is the actual fault level determined mainly by the impedance of the distribution transformer supplying the installation.

The second is that declared by the supply authority. This level may be higher than the actual as it may allow for flexibility in the future. Changes to the distribution transformer or its location will not cause an upgrading of the installation if it has already been designed for worst case conditions.

To calculate the fault level at the terminals of the distribution transformer, it is generally sufficiently accurate to consider only the transformer impedance. The HV supply usually has a far greater capacity and can supply a transformer shorted on its output with little drop (5% is a typical figure) in voltage.

Neglecting the impedance of the HV supply makes the
calculation very simple if the transformer impedance is known. Typical values are listed in Table 1.

The calculation for maximum fault current is ;
$\mathrm{Isc}=\frac{\mathrm{kVA} \times 100}{\sqrt{3 \times \mathrm{Vs} \times \mathrm{Z} \%}}$
e.g. For a 500 kVA trans-
former with 4% impedance and 415 volt secondary
$\mathrm{Isc}=\frac{500 \times 100}{\sqrt{3 \times 415 \times 4}}$
$=17.4 \mathrm{kA}$

Table 1

Transformer	\mathbf{X}	\mathbf{R}	\mathbf{Z}	Impedance	Fault prospective
$\mathbf{k V A}$	Ω	Ω	Ω	$\%$	$\mathbf{k A}$
250	0.0120	0.0200	0.0230	3.3	10.5
500	0.0052	0.0120	0.0137	4.0	17.5
1000	0.0026	0.0081	0.0086	5.0	28.0
1500	0.0015	0.0053	0.0056	5.0	43.0
2000	0.0012	0.0050	0.0052	6.0	46.5

Figure 1

Reducing factors

The fault level at the transformer terminals may not represent the actual fault level at the switchboard. The impedance of the connecting busbar or cables may make a significant reduction.

In Figure 1 the effect of additional circuit impedance on the prospective short circuit level of the transformer can be determined.

The calculation of the exact circuit impedance is not always simple as it is dependant on the resistance and reactance of the conductors. The reactance is determined by the conductor shape and spacing.

As a reasonable guide to cable impedance Table 2 can be used. The table assumes the cables to be laid flat and touching.

For small cables the impedance is determined mainly by the resistance but as the size increases the reactance becomes the major factor.

In Table 3 typical values for busbar systems are given. It is interesting to note that the impedance of busbars is higher than for cables as the larger phase spacings produce higher reactance values.

To use these tables, multiply the "impedance per metre" Z by the conductor length. The reduced fault level can then be determined from Figure 1.

Note:- This method only gives an approximate result. To determine fault levels more accurately the total circuit resistance and reactance need to be determined and applied in the following formula to determine the total impedance;

$$
\mathrm{Z} \text { total }=\sqrt{\mathrm{R}_{\mathrm{tot}}^{2}+\mathrm{X}_{\mathrm{tot}}^{2}}
$$

Table 2

Cable Size mm^{2}	\mathbf{X}	\mathbf{R} $\left(\right.$ at $\mathbf{4 5}{ }^{\circ} \mathrm{C}$) Ω / m	\mathbf{Z}
4	Ω / m	0.000155	0.004960
6	0.000146	0.003320	0.004962
10	0.000137	0.001960	0.003323
16	0.000129	0.001240	0.001965
25	0.000120	0.000725	0.000735
35	0.000116	0.000564	0.000576
50	0.000114	0.000416	0.000431
70	0.000109	0.000289	0.000309
95	0.000107	0.000215	0.000240
120	0.000104	0.000166	0.000196
150	0.000104	0.000136	0.000171
185	0.000103	0.000109	0.000150
240	0.000102	0.000084	0.000132
300	0.000101	0.000068	0.000122
400	0.000100	0.000055	0.000114
500	0.000099	0.000046	0.000109

Table 3

Bar Width	Phase ($\mathbf{6 . 3} \mathbf{~ m m}$ thick $)$	Centres $\mathbf{m m}$	\mathbf{X} $\mathbf{m m} \mathbf{m}$
40	150	$\mathbf{1 ~ B a r}$	2 Bars
50	200	0.00017	0.00015
	150	0.00019	0.00017
63	200	0.00015	0.00013
	150	0.00018	0.00016
80	200	0.00014	0.00012
	150	0.00016	0.00015
100	200	0.00014	0.00014
	150	0.00016	0.00016
125	200	0.00013	0.00013
	150	0.00015	0.00015
160	200	0.00012	0.00011
	150	0.00014	0.00013

Note: With the above phase centres the bar resistance is much smaller than the reactance.

For cable calculations please ask for your free copy of the NHP Short Circuit Calculation Nomogram available from any NHP office.

(continued from page 3)

Typical installation

The diagram in Figure 2 shows a typical installation being fed by two 1000 kVA transformers. The main switchboard is divided into two sections and is provided with a bustie to allow power to be fed to the installation from one transformer in the event of a failure of the other supply. It is important to note the effect that operating with the bustie closed has on the fault prospective seen by the outgoing devices.

In this example it can be seen that even with 50 kA at the main switchboard, equipment capable of handling 23 kA is all that is required at the distribution board.

Figure 2

Short circuit calculations

	Bustie open	Bustie closed
Transformer fault level	28 kA	28 kA
Impedance of busbar	0.001Ω	0.001Ω
Fault level at main switchboard	25 kA	50 kA
Impedance of cable	0.0042Ω	0.0042Ω
Fault level at distribution board	17 Ka	23 kA

NHP Electrical Engineering Products
Pty Ltd A.C.N. 004304812 Internet http://www.nhp.com.au

MELBOURNE

43-67 River Street,
Richmond, Vic. 3121
Phone: (03) 94292999
Fax (03) 94291075
SYDNEY
30-34 Day Street North, Silverwater, N.S.W. 2128
Phone: (02) 97483444
Fax: (02) 96484353
BRISBANE
25 Turbo Drive,
Coorparoo, Qld. 4151
Phone: (07) 38916008
Fax: (07) 38916139
ADELAIDE
50 Croydon Road,
Keswick, S.A. 5035
Phone: (08) 82979055
Fax: (08) 83710962
PERTH
38 Belmont Ave., Rivervale, W.A. 6103
Phone: (08) 92771777
Fax: (08) 92771700
NEWCASTLE
575 Maitland Road, Mayfield West, N.S.W. 2304
Phone: (02) 49602220
Fax: (02) 49602203
TOWNSVILLE
62 Leyland Street,
Garbutt, Qid. 4814
Phone: (07) 47790700
Fax: (07) 47751457
ROCKHAMPTON
208 Denison Street,
Rockhampton, Qld. 4700
Phone: (07) 49272277
Fax: (07) 49222947
TOOWOOMBA
Cnr Carroll St. \& Struan Crt.,
Toowoomba, Qld. 4350
Phone: (07) 46344799
Fax: (07) 46331796
CAIRNS
14/128 Lyons Street,
Bungalow, Qld. 4870
Phone: (07) 40356888
Fax: (07) 40356999
DARWIN
3 Steele Street,
Winnellie, N.T. 0820
Phone: (08) 89472666
Fax: (08) 89472049
Agents:
HOBART
199 Harrington Street,
Hobart, Tas. 7000
Phone: (03) 62349299
Fax: (03) 62311693
LAUNCESTON
59 Garfield Street,
Launceston, Tas. 7250
Phone: (03) 63448811
Fax: (03) 63444069
BURNIE
6 Wellington Street,
Burnie, Tas. 7320
Phone: (03) 64322588
Fax: (03) 64322580

Editorial content: - Please address all enquiries to 'The Editor - 'NHP Technical News' PO BOX 199, Richmond Vicforia 3121.

