[ISSUE 45] JULY 05 TECHNICAL NEWS

INDUSTRIAL SWITCHGEAR & AUTOMATION SPECIALISTS

THERMAL SIMULATION OF SWITCHGEAR

Introduction:

Low voltage switchgear is becoming increasingly miniaturised and the performance requirements of modern devices is increasing due to customer demands. This can produce a dramatic increase in operating temperatures both within the device and the surrounding areas, including at the wiring terminals. The correct thermal design of switchgear therefore becomes more important to provide safe and reliable operation.

Due to the complexities of heat generation and loss processes, along with the difficulties experienced when trying to measure these variables in a test situation, it is becoming increasingly attractive to turn to computer thermal simulations to model the ways in which low voltage switchgear creates and dissipates thermal energy.

By embracing new technologies and utilising advancements in computer simulation technology, it is possible to develop new products whilst monitoring the expected temperature heat rise within the device. The accurate analysis of internal temperature rise and thermal conduction/convection within a simulated design subsequently leads to:

- · Switchgear products being developed which are thermally stable,
- · Have an overall smaller size and
- · Provide many safe and reliable switching operations

NHP's range of Sprecher + Schuh contactors and circuit breakers (figure 1), have for some time now been designed and simulated for thermal heating effects using a basic computer simulation model. This thermal simulation model has only concentrated on a

Figure 1 - Sprecher + Schuh ACS system

single entity – i.e. the contactor or the circuit breaker. The next generation '3D' thermal simulation models utilised by Sprecher + Schuh are aiming to explore the thermal effects of combined contactor/circuit breakers and motor starters.

The use of computer simulations supersedes tedious and time consuming developments by 'trial and error', required to achieve temperature coordinated motor starter combinations.

FEATURES:

Introduction

Thermal Simulation Design & Requirements

Convection issues

Thermal simulation results

Conclusion

PLEASE CIRCULATE TO:

TECHNICAL NEWSLETTER

Thermal Simulation Design & Required Inputs:

This revolutionary 3D thermal simulation can be achieved by combining well known contact physics and mechanical engineering fundamentals of the contactor, circuit breaker and the thermal overload. The contactor is the primary focus of the model and taking into account numerous design aspects of the switchgear helps to develop an extremely accurate thermal model of the motor starter system.

These aspects include (but not limited to):

- The contact specifications
- Modelling the switching arc's heat transfer during high load operations
- The applied tightening torque of the wiring terminals, and
- Considering the heat flux effects through the housing of the device. ٠

The contacts of the device are modelled as a resistance located between the contact points. Due to the arc occurring at the instance of switching, this dramatically increases the temperature within the contact area and therefore the higher temperatures dramatically change the resistance of the contacts. The resistance of the contacts at high currents and high temperatures is given as:

$$Rk_{contact} = C_l \cdot \frac{\overline{H_k}}{\overline{F_k}} (1 + C_2 \ T), \ (1)$$

F_k	contact force;	Т	temperature of difference;
H_k	contact hardness;	$C_{1,2}$	constants

From the equation above, it can be seen that the contact resistance is primarily influenced by the contact force F_k and the contact hardness H_k of the contacts.

Table 5 of AS/NZS 60947.4.1-2004 (Low Voltage Switchgear and Controlgear -Contactors and motor starters, Electromechnical contactors and motor-starters) specifies the maximum temperature heat rise at the terminals during type testing of a contactor. The maximum temperature heat rise at the terminals of the contactor is affected by the clamping joint which in practice are contacts held together by means of a screw and washer system. The torque applied to the screw at the terminal changes the terminal resistance (in addition to the contact resistance explained above), and can greatly affect the temperature rise at the contactors terminals.

The terminal resistance (*Rkterminal*) is given by:

$$Rk_{terminal} = \frac{constant}{F_k^m} , \quad (3)$$

contact force; F_k

geometrical coefficient т

The geometrical coefficient (m) varies from 0.5 for cylindrical conductors being pressed against a flat surface up to 1 for a rectangular conductor being pressed against a flat surface (figure 2).

The contact force F_k required for equation (3), can be deducted for a given screw size from the expression below relating tightening torque Mt and contact force Fk.

 $F_k = constant \bullet M_t \{ [2d_s + (d_w + D_H)] + \tan \varphi \}^{-1} (4)$

 M_{t} tightening torque on screw; *ds* screw pitch diameter; washer face diameter; D_H clearance hole diameter;

tan pitch angle screw

dw

Substituting this value of Fk into equation (3), it is found that typical values for the terminal resistance (Rkterminal) of a cylindrical copper wire to a copper terminal at room temperature (25 °C), with a terminal tightening torque of 3Nm is approximately $25\mu\Omega$.

The switching arc of the contactors can be modelled by its voltage V_{arc} , the current i and the duration tarc. Each of these values is generally theoretically defined during the prototype stage or from actual switching tests. The heating of the contacts results from the switching of the contactor. For currents ≥ 200 A and with contact gaps of approximately 6 mm, about 40-60 % of the arc energy will be transferred directly into the contact terminals. The switching arc is well known to differ between the initiation

Figure 2 - Typical wiring geometrics within wiring terminal.

TECHNICAL NEWSLETTER

and completion of the arc which means that the thermal simulations would only take a median value for these heat transfer figures – i.e. roughly 50 %.

Convection Issues:

It is interesting to note that it is not only the internal parts of the contactor which entirely dictate the quality of the device – the outer plastic components which generally support internal components can also play an important part in the overall integrity of the contactor under high load and high temperature conditions. Even the volume of air contained within the contactor can determine whether it will be successful in the field. This is due to the convection occurring when the motor starters are installed in typical installations and therefore restricting the flow of air inside and around the devices.

Generally, motor starter circuits are installed side by side in a control cabinet. For the purpose of the thermal simulation model, the main parts of the contactor are modelled using their actual volumetric shape however the many smaller pieces making up the mechanism of the device can be simplified into a single volume in order to keep modelling as simple as possible. This is completed to ensure the heat conduction through the internal parts of the contactors is taken into account. As mentioned above, from the way the motor starter circuits are installed within the control cabinets (figure 1), it can be interpreted as convection occurring around a long bar (figure 3). The coefficient of convection (α - a function of both the surface temperature and the environment temperature) can be expressed in terms of the simulated 'long bar' dimensions and the fluid parameters of air.

Thermal Simulation Results:

Simulated inputs of the coil of the magnetic trip unit and thermal overload are required in conjunction with the simulation inputs discussed above to make up the motor starter combination. Both parts, especially the bimetal heater, are considerable heating sources and greatly affect the overall outcome of the thermal simulation.

From initial tests comparing the simulation results to test results, the accuracy can be seen to approach 90 %. Two explanations can be given for this deviation: the influence of tolerances of dimensions and material properties as well as between measurements and the fact that the simulation model does not take into account the ferromagnetic material parameters of the device – i.e. eddy currents. Model simplifications may also cause the simulation results to differ slightly from measurements.

Figure 4 shows the functional groups responsible for the overall heating effects within the motor starter as calculated from the simulation. It can be seen that over 40 % of the heating which effects a circuit breaker, occurs from the contacts sub-groups:

- · Terminal contact resistance,
- · Main contact resistance, and
- Contact bridge.

It is these areas of contactor design which influence the overall success of the contactor and therefore the overall success of the motor starter.

Conclusion:

This revolutionary 3D thermal simulation technology designed and tested by Sprecher+Schuh, will in the near future be the standard - not the exception - for the design and testing of temperature rise within contactors and circuit breakers. Simulation technology within the switchgear industry will only further improve producing products which are smaller, have a higher number of switching operations and are more stable to changes in internal temperature conditions. This thermal simulation technology allows you, our customers, to profit from the fact that our range of Sprecher + Schuh contactors and circuit breakers are optimised for common model cases. It is hoped that in the future this technology will one day be available for analysing individual customer requirements.

NHP is proud to be a part of Sprecher + Schuh's commitment to this new and exciting technology and are excited that we can provide this level of technology to our customers. NHP look forward to helping you with all aspects of your motor starting needs and as detailed above, the technical support and confidence in our motor starter combinations will be even further enhanced.

Figure 3 - Convection along a row of devices can be interpreted as convection across a long horizontal bar.

Figure 4 - % Power loss within motor starter circuit.

References:

(1) J. Paulke, P. Steinhaeuser and H. Weichert, 'Thermal Simulation of Switchgear', in Proceedings of the 47th Holm Conference, Montreal, 2001, pp. 6-11.

(2) Peter U. Frei and Hans O. Weichert, 'Advanced Thermal Simulation of a Circuit Breaker', Joint 22nd International Conference on Electrical Contacts and 50th IEEE Holm Conference on Electrical Contacts, Seattle, 2004.

TECHNICAL NEWSLETTER

NHP

Electrical Engineering Products Pty Ltd A.B.N. 84 004 304 812 www.nhp.com.au

AUSTRALIA

MELBOURNE 43-67 River Street Richmond VIC 3121 Phone (03) 9429 2999 Fax (03) 9429 1075 SYDNEY 30-34 Day Street North, Silverwater NSW 2128 Phone (02) 9748 3444 Fax (02) 9648 4353 NEWCASTLE 575 Maitland Road Mayfield West NSW 2304 Phone (02) 4960 2220 Fax (02) 4960 2203 BRISBANE 16 Riverview Place Murarrie QLD 4172 Phone (07) 3909 4999 Fax (07) 3399 9712 TOWNSVILLE 62 Leyland Street Garbutt QLD 4814 Phone (07) 4779 0700 Fax (07) 4775 1457 ROCKHAMPTON 14 Robison Street Rockhampton North QLD 4701 Phone (07) 4927 2277 Fax (07) 4922 2947 тоошоомва Cnr Carroll St & Struan Crt Toowoomba QLD 4350 Phone (07) 4634 4799 Fax (07) 4633 1796 CAIRNS 2/1 Bramp Close Portsmith QLD 4870 Phone (07) 4035 6888 Fax (07) 4035 6999 ADELAIDE 36-38 Croydon Road Keswick SA 5035 Phone (08) 8297 9055 Fax (08) 8371 0962 PERTH 38 Belmont Ave Rivervale WA 6103 Phone (08) 9277 1777 Fax (08) 9277 1700 DARWIN 3 Steele Street Winnellie NT 0820 Phone (08) 8947 2666 Fax (08) 8947 2049 HOBART 2/65 Albert Road Moonah Tasmania 7009 Phone (03) 6228 9575 Fax (03) 6228 9757 NEW ZEALAND AUCKLAND www.nhp-nz.com NHP Electrical Engineering Products (NZ) Limited 7 Lockhart Place Mt Wellington Auckland NZ Phone 64 9 276 1967 Fax 64 9 276 1992

CHRISTCHURCH 85 Gasson Street Sydenham Christchurch NZ Phone 64 3 377 4407 Fax 64 3 377 4405 Version 7

If you would like previous copies of Technical News, please complete the following form and fax to NHP on (03) 9429 1075 to the attention of the Marketing Department .					
Name:					
Title:					
Company:					
Address:					
Telephone: () Fax: ()					
Othe Pleas	r issues currently available. se tick those you would like to receive.		23. Talk about torque (Motors and torque)		
	1. First edition (Latched and delayed contactors)		24. Power factor what is it? (Power factor and correction equipment)		
	2. Non-standard contactor applications (Parallel and series connections of		25. Terminations, good or bad? (Terminals)		
	contacts varying frequencies)		26. RCDs are saving lives (Earth leakage protection; RCDs)		
	the failure)		27. The quality switchboard (Switchgear and protection		
	(Advantages of electronic soft starters)		devices for Switchboards) 28. How does electrical equipment rate		
	application)	-	(Understanding ratings of electrical equipment)		
	6. Contactor operating speed (Difference between AC and DC systems)		29. EMC - what's all the noise about (Understanding EMC)		
	7. Quick guide to fault levels (Calculating the approximate fault levels)		30. Controlling high short circuit currents with current limiting circuit breakers (Short circuit co-ordination KT 7)		
	8. IP ratings what do they mean? (IP Ratings, use and meaning)		31. Another step in electrical safety		
	9. Utilisation categories (Electrical life of switches)		32. Keep your cables cool (New		
	10. AC variable frequency drives and breaking (Regenerative energy)		33. A leak to earth can be electric (RCDs)		
	11.Don't forget the motor protection (Motor protection devices and application)		34. Keep Cool (Derating) 35. Improving star-delta protection		
	12. Electrical life of contactors (How and		(Overload and short circuit protection)		
	13. Liquid resistance starter developments	_	the correct current transformer)		
	(For large slipring motors) 14. Taking the 'hiss' out of DC switching		37. Is your copper flexible? (Flexible busbars)		
	(DC switching principles) 15. Start in the correct gear (Application		 Where did the 10 volts go? (world uniform voltages) 		
	of different motor starters)		39. Motor protection and wiring rules (overload protection)		
_	(Industrial pushbutton controls)		40. Confused about which RCD you should be choosing?		
_	(Electrical surges)		41. Circuit breakers working together		
	18. Putting the PLC in control (advantages of the PLC)		42. Keeping in contact.43. Is your switchboard in good form?		
	19. The thinking contactor (The development of the contactor)		44. Automation in a technological world.		
	20. Some don't like it hot (Temperature rise in electrical switchgear)				
	21. Pollution of the airwaves (Unwanted signals and their effects on motor protection devices)				
	22. What's different about safety (Safety devices and their application)				

Editorial content: - Please address all enquiries to:

The Editor - 'NHP Technical News' PO Box 199, Richmond, Victoria, 3121.

TNL-45 08/05 14H © Copyright NHP 2005